• 제목/요약/키워드: Fighter Pilot

검색결과 36건 처리시간 0.027초

신호탐지론을 활용한 조종사 Error 차이 분석 (Analysis of the Difference in Pilot Error by Using the Signal Detection Theory)

  • 권오영
    • 한국항공운항학회지
    • /
    • 제18권1호
    • /
    • pp.51-57
    • /
    • 2010
  • This study was to analyze the difference in pilot error by using the Signal Detection Theory. The task was to detect the targeted aircraft(signal) which is different shape from many other aircraft(noise). From the two experiments, we differentiated the task difficulty followed by change in noise stimuli. Experiment 1 was to search the signal stimuli(fighter plane) while the noise stimuli(cargo plane) were increasing. The results from the Experiment 1 showed the tendency to decrease the hit rate by increasing the number of noise stimuli. However, the false alarm rate was not increased. The sensitivity(d') showed quite high. In Experiment 2, a disturbance stimulus(helicopter) was added to noise stimuli. The result was generally similar to those of Experiment 1. However, the hit rate was lower than that of Experiment 1.

항공기의 실속 회복을 위한 자동 회복 장치 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Automatic Pitch Rocker for the Aircraft Deep Stall Recovery)

  • 한성호;황병문;이영호;이동규;안성준;김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.6-14
    • /
    • 2007
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). Limit value of aircraft entering into the departure in HAoA is related to aircraft configuration design. But, the control law such as AoA and yaw-rate limiter is implemented in digital Fly-By-Wire flight control system of supersonic jet fighter to guarantee the aircraft's safety in HAoA. The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist AoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. This paper addresses the design and validation of APR(Automatic Pitch Rocker) control law instead of MPO in order to automatic recovery without manual pitch rocking by the pilot. And, recovery characteristic with APR verifies by the nonlinear analysis and pilot evaluation.

공군 전투조종사 비행복 착용특성 및 만족도 조사 (Research on Actual Usage and Satisfaction of ROKAF Fighter Pilot's Flight Duty Uniform)

  • 이아람;남윤자;홍유화;임소정;임채근
    • 한국의류학회지
    • /
    • 제40권4호
    • /
    • pp.669-684
    • /
    • 2016
  • This study investigates Korean fighter pilot's usage and satisfaction of a flight duty uniform (FDU). The survey was conducted from October 2014 to March 2015 using Focus Group Interview (FGI) and questionnaires. FGI collected qualitative data about duty and requirements; subsequently, surveys were performed to collect quantitative data about wearing conditions and satisfaction with FDU. The results of the FGI and the questionnaire were as follows. Type of pilot duty was divided into two parts, flight duty and ground duty. It is important to consider duties as well as factors related to survival when developing FDU. According to anthropometric data and wearing size, the basic size for apparel grading should be changed from actual size, 'M95XL' to 'M100L'. It is also necessary to improve the whole sizing system. Further studies about body form changes in pilot's movement are needed to improve mobility because the respondents perceived some restrictions at several body parts in movement with the coverall uniform. Summer FDU had a low satisfaction level in vent hole function and appearance. Furthermore, protection problems in the vent hole were also an issue. Making a seasonal classification of FDU fabric will be more effective than a vent hole to increase a pilot's thermal satisfaction. Respondents had a passive stance towards FDU reform (including pocket change); therefore, a new FDU design strategy should concentrate on improving current FDU functions like mobility (or comfort) rather than dramatic changes. Pilots complained about the quality stability of FDU; therefore, quality control by military administration as well as concrete and clear design instructions by the developer should be attained together. The results obtained in this study are expected to be used as an important basis for the further development of FDU.

조종사의 각성 및 생리적 안정에 근거한 비행임무적합 수준 판정 시스템의 개발 (Development of Evaluation System for Aviation Mission Suitability Depending on Pilot's Alertness and Physiological Stability Level)

  • 김동수;이우일
    • 한국군사과학기술학회지
    • /
    • 제18권6호
    • /
    • pp.789-796
    • /
    • 2015
  • Fighter pilot's ability to maintain both mental and physical capabilities in highly stressful situations is important for aviation safety as well as mission performance because pilot may confront frequently unexpected physical and psychological stimulation. Cumulative psychological stress and physical fatigue can be causes of mood distortion, declined alertness, and can lead to reduction of combat capability. We have investigated bio-signals and performance tests to monitor stress and fatigue levels, and developed a system to evaluate aviation mission suitability before flight. This study elucidated that stress and fatigue level of pilot can be monitored by psychomotor cognitive test(PCT) and heart rate variability(HRV), and that the best of reference for aviation mission suitability was confidential interval obtained from cumulative data of individuals. The system to evaluate aviation mission suitability was constructed with measuring part with PCT and HRV and control part with DB and algorithm.

항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

자동추력 제어시스템 개발 및 검증 (Development and Validation of Automatic Thrust Control System)

  • 김종섭;조인제;이동규
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.905-912
    • /
    • 2010
  • Modern version of advanced supersonic fighter have ATCS (Automatic Thrust Control System) to maximum flight safety, fuel efficiency and mission capability the integrated advanced autopilot system such as TFS (Terrain Following System), GCAS (Ground Collision Avoidance System) and AARS (Automatic Attitude Recovery System) and etc. This paper addresses the design and verification of ATCS based on advanced supersonic trainer in HILS (Hardware In the Loop Simulator) with minimum hardware modification to reduce of development cost and maintain of system reliability. The function of ATCS is consisted of target speed hold mode in UA (Up and Away) and angle of attack hold mode in PA (Power Approach). The real-time pilot evaluation reveals that pilot workload is minimized in cruise and approach flight stage by ATCS.

조종사 공간능력과 이상자세회복과의 관계에 관한 연구 (A Study of Relationship between Pilot's Spatial Sbility and Unusual Attitude Recovery)

  • 임진혁;명노해
    • 한국군사과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.44-50
    • /
    • 2009
  • In this study, the relationship between military pilot's spatial ability and unusual attitude recovery was investigate. MRT(Mental Rotation Test) was measured with spatial ability whereas recovery time and error rates were mearsured with respect to 11 unusual attitudes. Eight fighter pilots and eight rear cockpit pilots of F-4E participated in this study. The results showed that MRT response time was significantly correlated with unusual attitude recovery time. The regression equation showed that unusual attitude recovery time was linearly related to MRT response time and could be explained by MRT response time more than 66%. In conclusion, it is recommended that a training is needed to improve the mental rotation ability in a visually restricted environments during maneuvering.

대한민국 공군 조종사의 일일 활동량에 관한 연구 (A Study on the Korean Air Force Pilot's Daily Activities)

  • 임정구
    • 한국항공운항학회지
    • /
    • 제21권3호
    • /
    • pp.15-20
    • /
    • 2013
  • Pilots' fatigue is one of the most serious threat to flying safety. Fatigue is influenced by many factors like sleep deprivation, daily activities, aging, stress, etc. This study was designed to investigate military pilots' daily activities. 20 pilots' daily activity was monitored by activity monitor, Fitbit(R), and the survey about sleep time and flight time was conducted. They placed Fitbit(R) on their waist for 5 days. During flight, they removed Fitbit(R) that had been used for checking their steps and walking distances. It was found that the average sleep time is 6.7 hours for fighter pilots. It was a little shorter than average sleep time for adults, 8 hours. Average steps per day was 6,838 which is more than sedentary worker's but less than active worker's. Their daily activities were not as high as we had expected. But their sleep time was very short. Flight surgeons should recommend them to take a rest and get sleep during rest period.

dPCA-HMM을 이용한 전투기 조종사 모델링 연구 (A Study on Modeling of Fighter Pilots Using a dPCA-HMM)

  • 최예림;전승욱;박종헌;신동민
    • 한국항공우주학회지
    • /
    • 제43권1호
    • /
    • pp.23-32
    • /
    • 2015
  • 전투기 조종사 모델링은 국방 M&S(Modeling & Simulation)를 활용한 전쟁 모의 및 전투 실험의 기초 기술로 국방 M&S의 중요성이 대두됨에 따라 연구의 필요성이 높아지고 있다. 특히, 최근 전투 로그의 축적으로 통계적 학습 기법을 활용한 모델링의 적용이 가능해졌으며 전투 로그의 시계열적 특성을 반영할 수 있는 HMM(Hidden Markov Model)이 적합하다. 하지만 HMM은 이산형 혹은 연속형 중 한 형태의 변수만을 통해 학습되므로 이형 변수로 구성된 전투 로그에 적용을 위해서는 형변환 과정이 필요하다. 따라서 본 논문에서는 형변환을 위한 dPCA(Discrete Principal Component Analysis)와 HMM을 접목한 dPCA-HMM 기반 조종사 모델링 방법을 제안한다. 국방과학연구소 관급 시뮬레이터로부터 생성된 전투 로그를 이용한 비교 실험을 통해 제안하는 방법론의 성능을 평가하였으며, 만족스러운 성능을 나타내었다.

Factors Affecting the Recovery of Pilots +Gz Tolerance

  • Park, Myunghwan;Jee, Cheolkyu;Kim, Cheonyoung;Seol, Hyeonju
    • 대한인간공학회지
    • /
    • 제36권5호
    • /
    • pp.535-543
    • /
    • 2017
  • Objective: This study was designed to identify factors affecting pilots' +Gz tolerance recovery from +Gz induced exhaustion. Background: +Gz tolerance of pilots has been considered as a crucial factor to fly the modern high performance fighter aircrafts. However, the factors affecting pilots' G-tolerance recovery from +Gz induced exhaustion have not been examined in the acceleration research community. Method: A centrifuge profile consisting of a high +Gz run for pilot's exhaustion and a low +Gz run for pilot's recovery and another high +Gz runs for pilot's second exhaustion was designed. The subjects' +Gz tolerance recovery ratio was measured by ratio of second high +Gz run time to the first high +Gz run time. The subjects' +Gz tolerance recovery rate was measured by dividing the subjects' +Gz tolerance recovery ratio by the low +Gz run time. The subjects' G-tolerance recovery rate was analyzed with respect to the subjects' personal factors including subjects' anthropometric and physiologic characteristics, flight time, flying aircraft type and so on. Results: The subjects' previous three-month flight hours (r=-0.336, p=0.039), six-month flight hours (r=-0.403, p=0.012) and one-year flight hours (r=-0.329, p= 0.044) correlated with the subjects' G-tolerance recovery rate. Conclusion: The subjects' G-tolerance recovery rate is clearly related to the subjects' previous flight hours. However, the subjects' anthropometric and physiologic characteristics do not show any statistically significant correlation with the subjects' G-tolerance recovery rate. Application: This research provides a safety critical insight to aviation community by identifying the factors to affect the gravity-induced loss of consciousness (GLOC) of pilots.