• Title/Summary/Keyword: Field-grown ginseng

Search Result 49, Processing Time 0.026 seconds

A Study on the Current Status of Mountain-Grown Ginseng

  • Im, Byung-Ok
    • Korean Journal of Plant Resources
    • /
    • v.24 no.6
    • /
    • pp.733-740
    • /
    • 2011
  • For the current study, 2,000 questionnaire sheets were printed and distributed while at the same time postal questionnaires were also conducted. The questionnaire survey was conducted July 25 through September 25, 2008, whereby 206 copies of desirable responses were secured. Analysis of the survey made it possible to grasp the overall current status and prospects of the mountain-grown ginseng business, and the level of technology required for cultivating mountaingrown ginsengs. It was learned that, with no legal and institutional arrangements now in force, no precise facts and figures concerning the total area cultivated and the quantity produced are currently available, and that the products are being marketed under the table. Under such circumstances, it is high time for the mountain-grown ginseng cultivation business to contribute to the promotion of incomes of the farming households and the generation of national wealth by developing the business into a systematic industry. This study conducted a survey on the current status of mountain-grown ginseng producers and of their production, thereby contributing to the introduction of policies for mountain-grown ginsengs.

Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS

  • Chen, Wei;Balan, Prabhu;Popovich, David G.
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.552-562
    • /
    • 2020
  • Background: Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods: Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results: All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion: This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.

Effect of boron nutrition on American ginseng in field and in nutrient cultures

  • Proctor, John T.A.;Shelp, Barry J.
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.73-77
    • /
    • 2014
  • Field and nutrient cultures of American ginseng (Panax quinquefolius L.) were used to establish foliar symptoms related to boron (B) concentration in leaves and soils, and to evaluate radish as a time-saving model system for B nutrition. Application of excess B, 8 kg/ha versus the recommended 1.5 kg/ha, to field plantings of 2-, 3-, and 4-yr-old American ginseng plants just prior to crop emergence caused, within 4 wk after crop emergence, leaf symptoms of chlorosis followed by necrosis starting at the tips and progressing along the margins. The B concentration in leaves of 2-4-yr-old plants receiving 1.5 kg/ha Bwas $30{\mu}g/g$ dry mass compared to $460{\mu}g/g$ dry mass where 8 kg/ha B was applied. Similarly, B concentration in soils receiving the lower B concentration was 1.8 mg/g dry mass and $2.2-2.8{\mu}g/g$ dry mass where the higher B concentration was applied. Application of 8 kg/ha B reduced the dry yield of 3rd-yr roots by 20% from 2745 kg/ha to 2196 kg/ha and 4th-yr roots by 26% from 4130 kg/ha to 3071 kg/ha. Ginseng seedlings and radish were grown under greenhouse conditions in nutrient culture with four B concentrations ranging from 0 mg/L to 10 mg/L. At 5 mg/L and 10 mg/L ginseng and radish developed typical leaf B toxicity symptoms similar to those described above for field-grown plants. Increasing B in the nutrient solution from 0.5 mg/L to 10 mg/L decreased, in a linear fashion, the root and leaf dry mass of ginseng, but not radish. Given the many similarities of ginseng and radish to B utilization, radish might be used as a timesaving model system for the study of B, and other micronutrients, in the slow-growing perennial ginseng.

Relationships Between Growth Characteristics as well as Mineral Consents of Ginseng Seedlings and Yield of Ginseng Roots (묘삼의 생육특성 및 무기성분과 인삼생산과의 관계)

  • 이종철;안대진
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.294-298
    • /
    • 1998
  • This study was conducted to investigate the effects of growth characteristics and mineral contents of ginseng seedling grown in different locations on ginseng growth and root yield. Ginseng seedling produced in 16 farmers' field at the semi-Yangjik seedbed were planted and cultivated in a field with same cultural practices. Missing plant was increased with increased year of ginseng age, especially severe at 5-year-old ginseng. Rate of missing plant was different among the origins of the seedling, even with the same weights. Negative correlation was noted between the missing rate of 3-year-old ginseng plants and NH4-N content of the seedling, but positive correlation between the missing rate and K2O and Ca contents of the seedling. Root yield of 6-year-old ginseng was also affected by the origins of ginseng seedlings. Root yield was high in ginseng plant from 0.6∼0.9 g see dings compared to those from over 0.9 g seedlings.

  • PDF

EFFECTS OF FIELD PRODUCTIVITY, VARIETY AND NITROGEN RATE ON THE YIELD, QUALITY AND PHYSICO-CHEMICAL CHARACTERISTICS OF BURLEY TOBACCO (버어리종 잎담배의 수량, 품질 및 이화학성에 미치는 포지비옥도, 품종 및 질소시용량의 영향)

  • Kim, Sang-Beom;Kim, Yong-Kyoo;Han, Chul-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.12 no.2
    • /
    • pp.91-101
    • /
    • 1990
  • A field experiment was conducted to find out the effects of field productivity, variety and nitrogen rate on the yield, quality, chemical constituents and physical properties of burley cured leaf in three field with different productivity(Degree of field productivity: A ; high, B ; medium, C : low) during successive two years(1988~89). The yield and quality were remarkably lowered when nitrogen fertilizer being applied much in low productive field. As compared with Burley 21, KB101 showed high yield, particularly the yield of KB101 in low productive field was relatively high. The effect of nitrogen rate on the yield was somewhat different according to field productivity and production year. When the nitrogen fertilizer being applied above 22.5kg/10a, the added nitrogen had no effect on the yield. Total nitrogen content of cured leaf grown in low productive field was high while total alkaloid was low, therefore total alkaloid/total nitrogen ratio was remarkably low. The lightness, red and yellow color of cured leaf grown in low productive field was remarkably low. As compared with Burley 21, the contents of total alkaloid and total nitrogen and shatter resistance index of cured leaf was somewhat low, while the filling power, lightness, red and yellow color were slightly high. Total nitrogen content of cured leaf was increased remarkably by nitrogen addition, but total alkaloid was not increased though the nitrogen fertilizer being applied above 22.5kg/10a. The filling power and shatter resistance index of cured leaf grown in high nitrogen plot, and the lightness and yellow color were low while the red color was relatively high. It comes into question that the visual quality being increased as well as increment of yield and nitrogenous compounds by nitrogen addition in high productive field. In low productive field, it is considerable that nitrogen addition for high yield should be prohibited because it causes the decrement of yield and quality, on the contrary.

  • PDF

Production Procedures and Economics of the American Ginseng (미국 화기삼의 종류별 생산방법과 경제성분석)

  • Lee, Dong-Phil
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.172-180
    • /
    • 2006
  • The purpose of this study is classifying types of American ginseng and estimating their production cost and revenue by the types. Usually, the American ginseng can be classified as 4 different types; wild ginseng(WG), wild simulated ginseng(WSG), woods grown ginseng(WGG), and field cultivated ginseng(FCG). This paper estimates costs and benefits for FCG, WGG, and WSG per acre. The WGG & WSG are produced under the tree at mountain while the FCG is produced at large scale farm with machinery. Annual profit for the FCG is $2,222 while that of the WGG and the WSG are $2,759 and $3,799 per acre. Although quantity produced per acre for the WGG and WSG(600lbs and 160lbs) are much smaller than that of the FCG(3,000lbs), prices per pound for the WGG and WSG($125, 375$) are higher than that of the FCG($24). In addition, production costs for the WGG and WSG are lower than that of the FCG because of the costs for seeds, shadow facility, and chemicals are different by the types of production.

Effect of Ridge Height on Growth Characteristics and Yield of 6 Year Old Panax ginseng in Cultivation of Paddy Soil (논토양에서 두둑높이에 따른 6년생 인삼의 생육 및 수량성)

  • Lee, Sung Woo;Lee, Seung Ho;Jang, In Bok;Lan, Jin Mei;Park, Kyung Hoon;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.5
    • /
    • pp.351-356
    • /
    • 2015
  • Background : Ginseng is mainly grown as a break crop in paddy fields after rice has been cultured for approximately 4 - 5 years, because it reduces the negative effects of continuous rice cropping. However, physiological disorders, such as leaf discoloration, occur in ginseng grown in paddy fields with poor drainage and excessive levels of inorganic components. Methods and Results : This study investigated the effect of ridge height on the growth characteristics and yield of 6 year old Panax ginseng. Ridge height was varied by making 20, 30, and 40 cm high ridges in a pooly drained paddy field. Soil moisture content decreased, while electrical conductivity (EC) as the ridge height increased. The $NO_3$, K, Ca, Mg, and Na levels also rose as ridge height increased, but organic matter and $P_2O_4$ levels did not. The leaf discoloration ratio rose as the ridge height increased, and root yield reached a peak when the ridge height was 30 cm. Conclusion : A ridge height of 30 cm in poorly drained paddy field improved ginseng growth by reducing leaf discoloration and increasing root survival, owing to more suitable soil moisture and EC levels.

Novel Cultivation of six-year-old Korean Ginseng (Panax ginseng) in pot: From Non-Agrochemical Management to Increased Ginsenoside

  • Kyung Ho Hwang;Hyun Gi Kim;Kiyoung Jang;Yong Ju Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.98-102
    • /
    • 2024
  • Background: Ginseng (Panax ginseng Meyer) is a perennial plant belonging to the Araliaceae family that is known to have various beneficial effects including improving memory loss and spatial cognitive ability, and anti-cancer and anti-diabetes activity. Its functional benefits also include improving liver function, regulating blood pressure, stress, and providing antioxidant activity. Usually, various agrochemicals are used in cultivating ginseng preventing from many diseases. Methods: FCGP (field cultivated ginseng in pot) was implemented by imitating MCWG (mountain cultivated wild ginseng). Pesticide analysis of pot cultivation was carried out and the contents of bioactive components such as ginsenoside were also analyzed. Results: FCGP ginsenoside content was higher than that of FCG (field cultivated ginseng) and MCWG. FCGP has been shown to have a relatively high antioxidant effect compared with cultivated ginseng. Conclusion: It was confirmed that ginseng can be grown for 6 years without resorting to use of pesticides. In addition, it was confirmed that effective accumulation of physiologically active ingredients such as ginsenoside is possible. Our result represents FCGP is a novel method of pesticide-free ginseng cultivation

Characteristics of Flower Organ, Inflorescence and Flowering in Panax ginseng and Panax quinquefolium (인삼의 화기생장과 화서형질 및 개화특성)

  • 안상득;최광태
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.45-56
    • /
    • 1984
  • This study was carried out to obtain the basic information on the development of flower bud and to clarify the characteristics of flower organ and flowering in Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolium). The formation of flower bud in the dormancy bud of Korean ginseng was initiated about the middle of June and completed late in September. The ovary, style and anther of Panax ginseng, violet-stem and yellow-berry variants, were formed earlier than those of Panax quinquefolium. Panax ginseng, therefore, flowered earlier by one month in comparison with Panax quinquefolium. As for the effect of temperature on the flowering of ginseng, both species, Panax ginseng and Panax quinquefolium, grown at 20 $^{\circ}C$ flowered earlier than those at 15 $^{\circ}C$ and field conditions, but did not flower at 30 $^{\circ}C$. Seed characters were better in Panax ginseng than in Panax quinquefolium and the amount of seeds showed the highly significant positive correlation coefficient with peduncle length in both Panax ginseng and Panax quinquefolium.

  • PDF

Growth Characteristics of Ginseng Seedling Transplanting by Self Soil Nusery, Nursery or Hydroponic Culture on Main Field (토직, 상토 및 양액육묘에 의해 생산된 묘삼의 본포 이식 후 생장특성)

  • Park, Hong Woo;Song, Jeong Ho;Kwon, Ki Bum;Lee, Ueong Ho;Son, Ho Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.238-243
    • /
    • 2017
  • Background: The production method of ginseng seedlings for ginseng cultivation is very important to ensure healthy rooting system as well as high quality, and yield of the resultant plants. This study was carried out to compare the growth characteristics of 2-year-old ginseng plants that were produced from seedlings grown in self soil nursery (SSN), nursery soil (NS) or hydroponic culture (HC). Methods and Results: The shading prop used was composed of four-layered 4 polyethylene (blue 3 + black 1) shade screen. The management of main field was done by inserting oil cake (1,200 kg/10 a) and then allowing Sudan grass to grow for a year. Seedling transplantation was carried out on April 6. Root growth was measured on October 25. Root weight was observed to be excellent at 6.0 g, following SSN transplantation. Root length was 21.2 cm for HC seedlings, but these plants had a physiological disorder (i.e., rusty root), in 83.5% plants of this treatment. The ratio of PD/PT (protopanaxadiol saponins / protopanaxatriol saponins) was higher in NS seedlings. Plant analysis revealed that Fe content was lower in HC seedlings with high rustiness. The growth of 2-years-old ginseng was different following these varying seedling cultivation methods, but seedlings from NS were not different from those grown in SSN. Conclusions: For the propagation of 2-year-old ginseng plants, NS seedlings may be a good substitute for SSN seedlings.