• Title/Summary/Keyword: Field-enhanced

Search Result 1,500, Processing Time 0.027 seconds

An Enhanced Floor Field based Pedestrian Simulation Model (개선된 Floor Field 기반 보행 시뮬레이션 모델)

  • Jun, Chul-Min
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.76-84
    • /
    • 2010
  • Many pedestrian simulation models for micro-scale spaces as building indoor areas have been proposed for the last decade and two models - social force model and floor field model - are getting attention. Among these, CA-based floor field model is viewed more favourable for computer simulations than computationally complex social force model. However, Kirchner's floor field model has limitations in capturing the differences in dynamic values of different agents and this study proposes an enhanced algorithm. This study improved the floor field model in order for an agent to be able to exclude the influences of its own dynamic values by changing the data structure, and, also modified the initial dynamic value problem in order to fit more realistic environment. In the simulations, real 3D building data stored in a spatial DBMS were used considering future integration with indoor localization sensors and real time applications.

In-situ rf treatment of multiwall carbon nanotube with various post techniques for enhanced field emission

  • Ahn, Kyoung-Soo;Kim, Jun-Sik;Kim, Ji-Hoon;Kim, Chae-Ok;Hong, Jin-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.859-862
    • /
    • 2003
  • Well-aligned multiwall carbon nanotubes (MWCNTs) were prepared at low temperature of 400 $^{\circ}C$ by utilizing a radio frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system. The MWCNTs were treated by an external rf plasma source and an ultra-violet laser in order to modify structural defect of carbon nanotube and to ablate possible contamination on carbon nanotube surface. Structural properties of carbon nanotubes were investigated by using a scanning electron microscopy (SEM), Raman spectroscopy, Fourier transformer Infrared spectroscopy (FTIR) and transmission electron microscope (TEM). In addition, the emission properties of the MWNTs were measured for the application of field emission display (FED) in near future. Various post treatments were found to improve the field emission property of carbon nanotubes.

  • PDF

Reconstruction of a near-surface tornado wind field from observed building damage

  • Luo, Jianjun;Liang, Daan;Weiss, Christopher
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.389-404
    • /
    • 2015
  • In this study, residential building damage states observed from a post-tornado damage survey in Joplin after a 2011 EF 5 tornado were used to reconstruct the near-surface wind field. It was based on well-studied relationships between Degrees of Damage (DOD) of building and wind speeds in the Enhanced Fujita (EF) scale. A total of 4,166 one- or two-family residences (FR12) located in the study area were selected and their DODs were recorded. Then, the wind speeds were estimated with the EF scale. The peak wind speed profile estimated from damage of buildings was used to fit a translating analytical vortex model. Agreement between simulated peak wind speeds and observed damages confirms the feasibility of using post-tornado damage surveys for reconstructing the near-surface wind field. In addition to peak wind speeds, the model can create the time history of wind speed and direction at any given point, offering opportunity to better understand tornado parameters and wind field structures. Future work could extend the method to tornadoes of different characteristics and therefore improve model's generalizability.

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • 오정근;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by plasma-enhanced chemical vapor deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • Oh, Jung-Keun;Ju, Byeong-Kwon;Kim, Nam-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.71-75
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and are analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene($C_2H_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen($H_2$) gas plasma indicates better vertical alignment, lower temperature process and longer tip, compared to that grown by ammonia($NH_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be $2.6\;V/{\mu}m$. We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

  • PDF

Enhanced Crystallization of Amorphous Silicon using Electric Field

  • Song, Kyung-Sub;Jun, Seung-Ik;Park, Sang-Hyun;Park, Duck-Kyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.243-246
    • /
    • 1997
  • A new technique for low temperature crystallization of amorphous silicon, called field aided lateral crystallization(FALC) was attempted. To demonstrate the concept of FALC, thin layer of nickel(30${\AA}$) was deposited on top of amorphous silicon film and the electric field was applied during the crystallization. The effects of electric field on the crystallization behavior of amorphous silicon film were investigated.

  • PDF

Field emission characteristics of carbon nanfiber bundles

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.211-214
    • /
    • 2004
  • Carbon nanofiber bundles were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition system. These bundles were vertically well-grown under the high negative bias voltage condition. The bundles were composed of the individual carbon nanofiber having less than 100 nm diameters. Turn-on voltage of the field emission was measured around 0.8 V/$\mu\textrm{m}$. Fowler-Nordheim plot of the measured values confirmed the field emission characteristic of the measured current.

Thermally Stimulated Current from High Density Polyethylene Treated by a High Field Application (고전계인가처리된 고밀도 폴리에티렌의 열자극전류)

  • 이덕출
    • 전기의세계
    • /
    • v.27 no.3
    • /
    • pp.31-35
    • /
    • 1978
  • In this paper, in order to clarify the mature of traps in polymer, the thermally stimulated current (TSC) measurements were mad on high density polyethylene by changing the condition of the high-field treatment such as the strength of the field (Fe), the treatment time (te) and the heating rate (.betha.). In addition, the TSC measured from the HDPE was compared with that from LDPE having different crystallinity. The obtained results can suggest that the trapping proceeds during the high-field treatment and the trap associated with the peak P$_{2}$ may have the closed relation to drystallinity and the release of trapped charge is enhanced by the molecular motion.

  • PDF