• Title/Summary/Keyword: Field validation

Search Result 748, Processing Time 0.025 seconds

Validation of the Long-Range Atmospheric Dispersion Model (장거리 대기 확산모델 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • A long-range atmospheric dispersion model named LADAS has been developed to understand the characteristics of the transport and diffusion of radioactive materials released into atmosphere. The developed numerical model for validation was compared with the results of the ETEX which is the long-range field tracer experiment. As a comparative study, the calculated concentration distributions agreed well in the case of the usage of the mixing heights calculated by the Richardson number than the usage of the constant mixing heights in LADAS model. Also, the calculated concentrations agreed with the time series of the measured ones at some sampling points.

TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM (접시형 태양열 집광 시스템을 이용한 열화학 사이클의 수소생산)

  • Kwon, Hae-Sung;Oh, Sang-June;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.169-176
    • /
    • 2011
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction)and W-D (Water Decomposition)steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $NiFe_2O_4/m-ZrO_2$powder, was successfully achieved hydrogen production with 9 (10 with a Xe-light solar simulator, 2009, Kodama et al.) repeated cycles under field conditions. Two foam device used in this study were tested for validation before an experiment was performed. The lab scale ferrite-conversion rate was in the range of 24~76%. Two foam devices were designed to for structural stability in this study. In the results of the experiments, the hydrogen percentage of the weight of each foam device was 7.194 and $9.954{\mu}mol\;g^{-1}$ onaverage, and the conversion rates 4.49~29.97 and 2.55~58.83%, respectively.

  • PDF

A Validation Study of Temperature Field Predicted by Computational Fire Model for Spray Fire in a Multi-Compartment (다중구획공간내 분무화재시 화재해석모델의 온도장 검증연구)

  • Kim, Sugn-Chan
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.23-29
    • /
    • 2014
  • The present study has been conducted to investigate the validity of the computational fire model and the results predicted by BRANZFIRE zone model and FDS field model are compared with a real scale fire test with spray fire in a multi-compartment. The liquid spray fires fueled with toluene and methanol are used as the fire source and the quantitative measurement of heat release rate is performed in an isolated ISO-9705 compartment with a standard door opening. The temperature field predicted by FDS model showed good agreement with the measurement in the fire room and the corridor, and BRANZFIRE model also gave acceptable result in spite of its simplicity and roughness. The mean temperature predicted by FDS model corresponds with measurement within maximum discrepancy range of 25% and the overall mean value of FDS model matched well with experimental data less than 10%. This study can contribute to establish the limitation and application scope of computational fire model and provide reference data for applying to reliable fire risk assessment.

Water Quality Model Development for Loading Estimates from Paddy Field (논에서의 오염부하 예측을 위한 범용모형 개발)

  • Jeon, Ji-Hong;Hwang, Ha-Sun;Yoon, Kwang-Sik;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.344-355
    • /
    • 2003
  • Water quality model applicable paddy field was developed using field experiment during 1999 ${\sim}$ 2002. This model involves inputs from fertilization and sediment release as dirac delta function and continuous source function, respectively, and can simulate various processes such as ponded depth, surface drainage, total nitrogen concentration and total phosphorus concentration in a daily basis. The model was calibrated using data collected from field experiments which was irrigated with ground water and validated from field experiments which was irrigated with surface water. The nutrient concentration of surface water depended on the fertilization and dirac delta function can efficiently explain the valiance of nutrient concentration of surface water by fertilizer. As a result of calibration and validation, this model demonstrates good agreement. The model fit efficiencies ($R^2$) of ponded depth, surface concentration of TN and TP were 0.93,0.98 and 0.95, respectively for calibration, and those of TN and TP were 0.99 and 0.70, respectively for validation. We can apply lake and reservoir model to analysis paddy field considered with shallow ponded system, but it will need so many parameters and have much uncertainty. Fortunately, paddy field have a series of cultural practices yearly basis, such as irrigation-fertilization-forced drain-harvest with a similar time , so simple model may explain the mechanism for paddy field. Water quality model for paddy field developed in this study is simply, needs little parameters, but appeared high applicability to evaluate paddy filed drainage. We recommend this model to estimate nutrient loading from paddy field and establish best management practice.

Improving the quality of light-field data extracted from a hologram using deep learning

  • Dae-youl Park;Joongki Park
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.165-174
    • /
    • 2024
  • We propose a method to suppress the speckle noise and blur effects of the light field extracted from a hologram using a deep-learning technique. The light field can be extracted by bandpass filtering in the hologram's frequency domain. The extracted light field has reduced spatial resolution owing to the limited passband size of the bandpass filter and the blurring that occurs when the object is far from the hologram plane and also contains speckle noise caused by the random phase distribution of the three-dimensional object surface. These limitations degrade the reconstruction quality of the hologram resynthesized using the extracted light field. In the proposed method, a deep-learning model based on a generative adversarial network is designed to suppress speckle noise and blurring, resulting in improved quality of the light field extracted from the hologram. The model is trained using pairs of original two-dimensional images and their corresponding light-field data extracted from the complex field generated by the images. Validation of the proposed method is performed using light-field data extracted from holograms of objects with single and multiple depths and mesh-based computer-generated holograms.

The Quantification and Validation of Loxoprofen using Near-infrared(NIR) Spectrum Method (근적외부스펙트럼 측정법을 이용한 록소프로펜의 정량화 및 밸리데이션)

  • Choi, Sung-Up
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.396-401
    • /
    • 2014
  • In this study, we used NIR spectrum method instead of conventional HPLC method to shorten the analysis and manufacturing time of the loxoprofen products. Loxoprofen mixtures with other pharmaceutical additives were prepared and evaluated by the NIR spectrometer and the HPLC system. Validation of both methods was performed for specificity, accuracy and precision. NIR spectrometer method was validated and revealed proper results for the in-process quality control in the pharmaceutical field. In conclusion, NIR spectrometry can be replaced by HPLC method.

The Development of the Teaching Competency Scale for Character Education in Early Childhood Teachers (영유아교사 인성교육지도역량 척도 개발)

  • Goh, Eun Kyoung;Jeon, Hyo Jeong
    • Korean Journal of Child Studies
    • /
    • v.37 no.5
    • /
    • pp.129-144
    • /
    • 2016
  • Objective: This study's purpose was to develop a teaching competency scale for character education for early childhood teachers and to examine its reliability. Methods: The study procedure was as follows: First, scale items were generated by reviewing the literature as a deductive approach and focused interviews with 8 field experts in an inductive approach. Second, face validation was assessed by 7 academic experts, and statistical validation processes were done twice. The data used in the final statistical analyses included 206 questionnaires for early childhood teachers. Statistical validation included item response analysis, item discrimination analysis, exploratory factor analysis, confirmatory factor analysis, and reliability analysis. Results: The 3 factors identified were as follows: Communicate teaching competence, practical teaching competence, and instrumental teaching competence. The validity and reliability of the Teaching Competency Scale for Character Education in Early Childhood Teachers were acceptable. Conclusion: This new scale will be a useful tool to better support character education for early childhood teachers and contribute to providing a basis for developing more sophisticated tools.

A Study on the Design and Verification-Validation of the Supportive Equipment for Shipyard Test of Naval Combat System (함정 전투체계 함상시험을 위한 지원장비 설계 및 검증 연구)

  • Jung, Youngran;Kim, Cheolho;Han, Woonggie;Kim, Jaeick;Kim, Hyunsil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.318-326
    • /
    • 2014
  • The Shipyard Test of Naval Combat System depends on external factors, such as weather conditions and availability of its sensor-weapon, due to the need of on-board sensor-weapon during the test. This paper suggests the Supportive Equipment using virtual simulator for Shipward Test, in case of the unavailability of the on-board sensor-weapon or the test support force(aircraft, surface ship etc.), to pre-check the functions of the combat system as well as to prepare the Shipyard Test. To mock the real sensor-weapon functions as similar as possible, the Supportive Equipment for Shipyard Test was verified by the Verification and Validation process, which is usually performed while developing models in the Modeling & Simulation field.

Quantification of Naproxen in Pharmaceutical Formulation using Near-Infrared Spectrometry (근적외 분광분석법을 이용한 나프록센 정제의 정량분석)

  • Kim Do Hyung;Woo Young Ah;Kim Hyo Jin
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Near-infrared (NIR) spectroscopy has been widely applied in various field, since it is nondestructive and no sample preparation is required. In this paper, NIR spectroscopy was used for the determination of naproxen in a commercial pharmaceutical preparation. NIR spectroscopy was used to determine the content of naproxen in intact naproxen tablets containing 250 mg ($65.8\%$ nominal concentration) by collecting NIR spectra in the range of $1100{\sim}1750nm$. The laboratory-made samples had $46.1{\sim}85.5\%$ nominal naproxen concentration. The measurements were made by reflection using a fiber-optic probe and calibration was carried out by partial least square regression (PLSR). Model validation was performed by randomly splitting the data set into calibration and validation data set (63 samples as a calibration data set and 42 samples as a validation data set). The developed NIR calibration gave results comparable to the known values of tablets in a laboratorial manufacturing process with standard error of calibration (SEC) and standard error of prediction (SEP) of $1.06\%\;and\;1.04\%$, respectively. The NIR method showed good accuracy and repeatability. NIR spectroscopic determination in intact tablets allowed the potential use of real time monitoring for a running production process.

Development of Calculating System of Solids Level to Harvest High Solids Potato (Solanum tuberosum L.)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.103-109
    • /
    • 2013
  • Estimating the high tuber solids needs a simulation system on potato growth, and its development should be obtained by using agricultural elements which analyze the relationship between crop growth and agricultural factors. An accurate simulation to predict solids level against climatic change employs a calculation of in vivo energy consumption and bias for growth and induction shape in a slight environmental adaptation. So, to calculate in vivo energy consumption, this study took a concept of estimate of the amount of basal metabolism in each tuber. In the validation experiments, the results of measuring solid accumulation of potatoes harvested at dates suggested by simulation agreed with the actual measured values in each regional field during the growth period of years from 2006 till 2010. The mean values of tuber solids level and inter-annual level variation in validation experiments were predicted well by the simulation model. And also, the results of validation experiments represent that concentration of tuber solids were due mainly to the duration of sunshine, above 190 hours per a month, and the cumulative amount of radiation, above 2,200 $MJ{\cdot}m^{-2}$, of the effective growth period.