• Title/Summary/Keyword: Field smart agriculture

Search Result 112, Processing Time 0.025 seconds

Apple detection dataset with visibility and deep learning detection using adaptive heatmap regression (가시성을 표시한 사과 검출 데이터셋과 적응형 히트맵 회귀를 이용한 딥러닝 검출)

  • Tae-Woong Yoo;Dasom Seo;Minwoo Kim;Seul Ki Lee;Il-Seok, Oh
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2023
  • In the fruit harvesting field, interest in automatic robot harvesting is increasing due to various seasonality and rising harvesting costs. Accurate apple detection is a difficult problem in complex orchard environments with changes in light, vibrations caused by wind, and occlusion of leaves and branches. In this paper, we introduce a dataset and an adaptive heatmap regression model that are advantageous for robot automatic apple harvesting. The apple dataset was labeled with not only the apple location but also the visibility. We propose a method to detect the center point of an apple using an adaptive heatmap regression model that adjusts the Gaussian shape according to visibility. The experimental results showed that the performance of the proposed method was applicable to apple harvesting robots, with MAP@K of 0.9809 and 0.9801 when K=5 and K=10, respectively.

Environmental Influences on SPAD Values in Prunus mume Trees: A Comparative Study of Leaf Position and Photosynthetic Efficiency Across Different Light Conditions

  • Bo Hwan Kim;Jongbum Lee;Gyung Deok Han
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.501-509
    • /
    • 2024
  • Prunus mume is a culturally significant fruit tree in East Asia that is widely used in traditional foods and medicines. The present study investigated the effects of sunlight exposure and leaf position on the photosynthetic efficiency of P. mume using SPAD values. The study was conducted at Cheongju National University of Education, Korea, under contrasting conditions between sunny (Site A) and shaded (Site B) areas on P. mume trees. Over three days, under varied weather, photosynthetic photon flux density (PPFD) and SPAD measurements were collected using a SPAD-502 plus chlorophyll meter and a smartphone PPFD meter application. The SPAD values of the 60 leaves were measured in triplicate for each tree. The results indicated that trees in sunny locations consistently exhibited higher SPAD values than those in shaded areas, implying greater photosynthetic efficiency. Moreover, leaves positioned higher in the canopy showed increased photosynthetic efficiency under different light conditions, underscoring the significance of leaf placement and light environment in photosynthetic optimization. Despite the daily sunlight variability, these factors maintained a consistent influence on SPAD values. This study concludes that optimal leaf positioning, influenced by direct sunlight exposure, significantly enhances photosynthetic efficiency in P. mume. These findings highlight the potential of integrating smart farming techniques, especially open-field smart farming technology, to improve photosynthesis and, consequently, crop yield and efficiency. The findings also highlight the need for further exploration of environmental factors affecting photosynthesis for agricultural advancement.

Journal of Knowledge Information Technology and Systems (스마트축사 활용 가상센서 기술 설계 및 구현)

  • Hyun Jun Kim;Park Man Bok;Meong Hun Lee
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.55-62
    • /
    • 2023
  • Innovation and change are occurring rapidly in the agriculture and livestock industry, and new technologies such as smart bams are being introduced, and data that can be used to control equipment is being collected by utilizing various sensors. However, there are various challenges in the operation of bams, and virtual sensor technology is needed to solve these challenges. In this paper, we define various data items and sensor data types used in livestock farms, study cases that utilize virtual sensors in other fields, and implement and design a virtual sensor system for the final smart livestock farm. MBE and EVRMSE were used to evaluate the finalized system and analyze performance indicators. As a result of collecting and managing data using virtual sensors, there was no obvious difference in data values from physical sensors, showing satisfactory results. By utilizing the virtual sensor system in smart livestock farms, innovation and efficiency improvement can be expected in various areas such as livestock operation and livestock health status monitoring. This paper proposes an innovative method of data collection and management by utilizing virtual sensor technology in the field of smart livestock, and has obtained important results in verifying its performance. As a future research task, we would like to explore the connection of digital livestock using virtual sensors.

A Study on the Implementation of Digital Twin Architecture and Detailed Technology for Agriculture and Livestock Industry (농·축산 산업을 위한 디지털 트윈 아키텍처 및 세부 기술 구현에 관한 연구)

  • Jeong, Deuk-Young;Kim, Se-Han;Lee, In-Bok;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Kim, Jun-Gyu;Park, Se-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.398-408
    • /
    • 2021
  • Since COVID-19, the world's food shortage population has more than doubled from 130 million to 270 million. In addition, as various issues related to the food industry such as climate change arise, the importance of agriculture and livestock is increasing. In particular, it is still difficult to utilize data generated in these field. Therefore, the objective of this study was to explain the limitations of using data based on fragmentary analysis and the necessity of Digital Twin. The additional objective was to propose an architecture and necessary technologies of a Digital Twin platform suitable for agricultural and livestock. It also proposed a Digital Twin-based service that could be used in the near future, such as labor reduction, productivity improvement, personalized consumption, transportation, and distribution by incorporating intelligent information convergence technology into facility horticulture and livestock farming.

Development of Lora Wireless Network Based Water Supply Control System for Bare Ground Agriculture (자가 충전 및 장거리 무선 네트워크를 지원하는 노지 농작물 관수 자동화 시스템 설계)

  • Joo, Jong-Yui;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1373-1378
    • /
    • 2018
  • In order to solve the problems such as reduction of agriculture population, aging and declining of grain self sufficiency rate, agriculture ICT convergence technology utilizing IoT technology is actively being developed. Agricultural ICT technology only concentrates on facility houses, and there is no automated control system in the field of cultivation. In this paper, we propose an irrigation control system that automatically controls the solenoid valves and water pumps in a large area with Lora wireless communication. The proposed system does not require a separate power source by using a small solar panel, and it is very convenient to install and operate supporting wireless auto setup by plug-and-play method. Therefore, it is expected that it will contribute to the reduction of labor force, quality of agricultural products, and productivity improvement.

An IoT routing based Local River Field Environment Management solution using Uzbekistan Testbed

  • Khudaybergenov, Timur;Park, Youngki;Im, Sangil;Ho, Bae Jin;Yang, Seungyoun;Kim, Jintae;Lee, Sunghwa;Cha, Dae Yoon;Woo, Deokgun;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • Water consumption has grown at more than 2.5 times, comparing the past century. About 2.8 billion people live in river basins with some form of water deficit, because more than 75 % of the river flows are withdrawn for agriculture and other needs. Challenges faced by more and more countries in their struggle for economic and social development are increasingly related to water. This paper proposes a test of an effective local river field environment management solution. And describing a part of a pilot project for the ministry of water resources of Uzbekistan. Current work focused on direct action items of the existing project and describe an IoT routing based solution for local river field environment management solutions. Suggested technological decisions provided by needs and on-site testing results. The paper describes the backbone of IoT routing based river water resources management system.

A Study on Efficient Methods of Pesticide Control Using Agricultural Unmanned Aerial Vehicles (농업용 무인항공기를 활용한 농약방제 효율성 방안에 관한 연구)

  • Jeong, Ga-Young;Cho, Yong-Yoon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.35-40
    • /
    • 2022
  • In the agricultural environment, pesticide control requires a high risk of work and a high labor force for farmers. The effectiveness of pesticide control using unmanned aerial vehicles varies according to climate, land type, and characteristics of unmanned aerial vehicles. Therefore, an effective method for pesticide control by unmanned aerial vehicles considering the spraying conditions and environmental conditions is required. In this paper, we propose an efficient pesticide control system based on agricultural unmanned aerial vehicles considering the application conditions and environmental information for each crop. The effectiveness of the proposed model was demonstrated by measuring the drop uniformity of pesticides according to the change in altitude and speed after attaching the sensory paper and measuring the penetration rate of the drug inside the canopy according to the change in crop growth conditions. Experiment result, the closer the height of the UAV is to the ground, the more evenly the crops are sprayed, but for safety reasons, 2m more is suitable, and on average a speed of 2m/s is most suitable for control. The proposed control system is expected to help develop intelligent services based on the use of various unmanned aerial vehicles in agricultural environments.

Bhumipol Dam Operation Improvement via smart system for the Thor Tong Daeng Irrigation Project, Ping River Basin, Thailand

  • Koontanakulvong, Sucharit;Long, Tran Thanh;Van, Tuan Pham
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.164-175
    • /
    • 2019
  • The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.

  • PDF

Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester (무·배추 수확 작업을 위한 다목적 주행플랫폼 개발)

  • H. N. Lee;Y. J. Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.

A Study on the Effect of Perceived Usefulness Factors of Smart Farm on the Rural Entrepreneurial Intention (스마트팜의 지각된 유용성 요인이 농촌창업의도에 미치는 영향에 관한 연구)

  • Ahn, Mun Hyoung;Heo, Chul-Moo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.4
    • /
    • pp.161-173
    • /
    • 2020
  • As ICT convergence technology has spread and applied to various industrial fields and society in general, interest in rural entrepreneurship using smart farm as a means for solving many pending problems in agriculture is increasing. In this context, this study is to look at the influential factors in terms of perceived usefulness associated with the rural entrepreneurial intention using smart farm and suggest a proposal for spreading smart farms. The subjects were 296 general adults over 20 years old who were selected by simple random sampling method. The research method was exploratory factor analysis and multiple regression analysis using IBM SPSS 22.0. The perceived usefulness of smart farm, which are availability, reliability and economic efficiency were selected as independent variables to analyze the influential factors on rural entrepreneurial intention using smart farm and the moderating effect of personal innovation was observed. As a result, reliability and economic efficiency have a positive(+) influence on rural entrepreneurial intention using smart farm. And personal innovation moderates the relationship between the availability, reliability of smart farm and rural entrepreneurial intention using smart farm. The results of this study have significance in that we devised and empirically revealed factors affecting rural entrepreneurship intentions from the perspective of perceived usefulness of smart farms, away from studies of general entrepreneurship intention factors such as internal personal characteristics and external environmental factors. The implications of the study are expected to be utilized at the seeking direction of policy for potential entrepreneur using smart farm, the training and consulting in actual field of smart farm.