• Title/Summary/Keyword: Field smart agriculture

Search Result 107, Processing Time 0.031 seconds

Growth of Lettuce and Young Radish and Changes of Soil Chemical Properties after Application of Soldier Fly Compost (동애등에분 처리 시 상추와 무의 생육 및 토양화학성 변화)

  • Young-Sun Kim;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.152-158
    • /
    • 2023
  • This study was conducted to evaluate the effects on soil chemical properties and plant growth after applying soldier fly compost (SFC). Treatments were as follows. No fertilizer (NF), control, SFC1 (SFC 250 kg/10a), SFC2 (SFC 500 kg/10a) and SFC3 (SFC 1,000 kg/10a). As compared to control in the pot test, organic matter (OM) and exchangeable sodium (Ex-Na) of SFC3 treatment were increased, and growth and nutrient uptake of young radish were not significantly different. Correlation coefficient between soil chemical factors like total nitrogen (T-N), OM, and CEC and uptake of nitrogen (N) and phosphorus (P) was significantly positive (p≤0.05). Compared to control in the field test, electrical conductivity, T-N, OM, Av.-P2O5, and CEC was increased, and lettuce growth was not significantly different. Correlation coefficient between application amount of SFC and T-N, OM, and Av.-P2O5 was significant positively (p≤0.05). These results indicated that the application of SFC improved nutrient availability of soil by increasing OM and CEC.

A study on the impact on predicted soil moisture based on machine learning-based open-field environment variables (머신러닝 기반 노지 환경 변수에 따른 예측 토양 수분에 미치는 영향에 대한 연구)

  • Gwang Hoon Jung;Meong-Hun Lee
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.47-54
    • /
    • 2023
  • As understanding sudden climate change and agricultural productivity becomes increasingly important due to global warming, soil moisture prediction is emerging as a key topic in agriculture. Soil moisture has a significant impact on crop growth and health, and proper management and accurate prediction are key factors in improving agricultural productivity and resource management. For this reason, soil moisture prediction is receiving great attention in agricultural and environmental fields. In this paper, we collected and analyzed open field environmental data using a pilot field through random forest, a machine learning algorithm, obtained the correlation between data characteristics and soil moisture, and compared the actual and predicted values of soil moisture. As a result of the comparison, the prediction rate was about 92%. It was confirmed that the accuracy was . If soil moisture prediction is carried out by adding crop growth data variables through future research, key information such as crop growth speed and appropriate irrigation timing according to soil moisture can be accurately controlled to increase crop quality and improve productivity and water management efficiency. It is expected that this will have a positive impact on resource efficiency.

Big data Analysis using Python in Agriculture Forestry and Fisheries

  • Kim, So hee;Kang, Min Soo;Jung, Yong Gyu
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.47-50
    • /
    • 2016
  • Big Data is coming rapidly in recent times and keep the vast amount of data was utilized them. These data are utilized in many fields in particular, based on the patient data in the medical field to increase the therapeutic effect, as well as re-incidence to better treatment, lowering the readmission rates increased the quality of life. In this paper it is practiced to report basis of the analysis and verification of data using python. And it can be analyzed the data through a simple formula, from Select reason of Python to how it used; by Press analysis of Agriculture, Forestry and Fisheries research. In this process, a simple formula can be used that expression for analyzing the actual data so it taking advantage of the use of functions in real life.

Tele-operating System of Field Robot for Cultivation Management - Vision based Tele-operating System of Robotic Smart Farming for Fruit Harvesting and Cultivation Management

  • Ryuh, Youngsun;Noh, Kwang Mo;Park, Joon Gul
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Purposes: This study was to validate the Robotic Smart Work System that can provides better working conditions and high productivity in unstructured environments like bio-industry, based on a tele-operation system for fruit harvesting with low cost 3-D positioning system on the laboratory level. Methods: For the Robotic Smart Work System for fruit harvesting and cultivation management in agriculture, a vision based tele-operating system and 3-D position information are key elements. This study proposed Robotic Smart Farming, an agricultural version of Robotic Smart Work System, and validated a 3-D position information system with a low cost omni camera and a laser marker system in the lab environment in order to get a vision based tele-operating system and 3-D position information. Results: The tasks like harvesting of the fixed target and cultivation management were accomplished even if there was a short time delay (30 ms ~ 100 ms). Although automatic conveyor works requiring accurate timing and positioning yield high productivity, the tele-operation with user's intuition will be more efficient in unstructured environments which require target selection and judgment. Conclusions: This system increased work efficiency and stability by considering ancillary intelligence as well as user's experience and knowhow. In addition, senior and female workers will operate the system easily because it can reduce labor and minimized user fatigue.

MCU Module Design for Smart Farm Sensor Processing (스마트팜 센서 처리용 MCU 모듈 설계)

  • Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.285-286
    • /
    • 2021
  • With the recent development of Internet of Things (IoT) technology, smartization technology is expanding to the fields of agriculture, livestock, and fisheries, and smartization is in progress. In this smart technology, the most important thing is how to measure the data in the field and transmit it to the management system. Currently, the sensors used in the construction of smart farms and other livestock houses and farms are measuring and monitoring smart farms and other environmental conditions through various sensors such as temperature, humidity, CO gas, CO2, hydrogen, and O2. The communication method between these sensors and the HMI (Human Machine Interface) module that controls and manages the smart farm is still mainly using the RS-485-based modbus-RTU method. In this paper, we intend to design the MCU module for HMI so that various sensor modules can be connected to manage data through the RS-485-based Modbus method so that the sensor data required for smart farm construction can be managed by the HMI module.

  • PDF

A Study on the Development of Gear Transmission Error Measurement System and Verification (기어 전달오차 계측 시스템 개발 및 검증에 관한 연구)

  • Moon, Seok-Pyo;Lee, Ju-Yeon;Moon, Sang-Gon;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.136-144
    • /
    • 2021
  • The purpose of this study was to develop and verify a precision transmission error measurement system for a gear pair. The transmission error measurement system of the gear pair was developed as a measurement unit, signal processing unit, and signal analysis unit. The angular displacement for calculating the transmission error of the gear pair was measured using an encoder. The signal amplification, interpolation, and transmission error calculation of the measured angular displacement were conducted using a field-programmable gate array (FPGA) and a real-time processor. A high-pass filter (HPF) was applied to the calculated transmission error from the real-time processor. The transmission error measurement test was conducted using a gearbox, including the master gear pair. The same test was repeated three times in the clockwise and counterclockwise directions, respectively, according to the load conditions (0 - 200 N·m). The results of the gear transmission error tests showed similar tendencies, thereby confirming the stability of the system. The measured transmission error was verified by comparing it with the transmission error analyzed using commercial software. The verification showed a slight difference in the transmission error between the methods. In a future study, the measurement and analysis method of the developed precision transmission error measurement system in this study may possibly be used for gear design.

Estimation and Mapping of Methane Emission from Rice Paddies in Gyunggi-do Using the Modified Water Management Scaling Factor (수정된 물관리보정인자를 적용한 경기도 논에서의 메탄 배출량 산정과 지도화)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Yeonuk;Kang, Minseok;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.320-326
    • /
    • 2016
  • From the perspective of climate-smart agriculture, it is becoming more critical to accurately estimate the amount of greenhouse gas emissions in the agricultural sector. In order to accurately ascertain the methane emissions from rice paddies, which account for a significant portion of the emission from the agricultural sector, we used the data from the 2010 Agriculture, Forestry and Fisheries Census, the revised water management scaling factors and their calculation program. In order to facilitate the analyses and understanding, the results were mapped using the ArcGIS software. The fact that the validation of the mapped values against the actual field measurements at one site showed little difference encourages the necessity to further this study. The administrative districts-based map of methane emission can help clearly identify the regional differences. Furthermore, the analysis of their major controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

Measurement Uncertainty calculation for improving test reliability of Agricultural tractor ROPS Test (농업용트랙터 ROPS 시험의 신뢰성 향상을 위한 측정불확도 추정)

  • Ryu Gap Lim;Young Sun Kang;Taek Jin Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • The agricultural tractor ROPS test method according to OECD code 4 is a test to assess whether the driver's safety area can be secured when a tractor overturns, and reliability should be ensured. In this study, a model formula and procedure for calculating measurement uncertainty expressing reliability in the field of agricultural machinery testing were established according to the ISO/IEC Guide 98-3:2008. The characteristics of the ROPS test device were assessed and repeated tests were performed, and the were used as factors to calculate the measurement uncertainty. As a result of repeated tests, the accuracy was higher than 1.9 % in all load directions; thus, they were, applied to calculate the type A standard uncertainty. The final expanded uncertainty was calculated within the range of less than ± 7.76 kN of force and ± 6.96 mm of deformation in all load directions.

Design and Implementation of Fruit harvest time Predicting System based on Machine Learning (머신러닝 적용 과일 수확시기 예측시스템 설계 및 구현)

  • Oh, Jung Won;Kim, Hangkon;Kim, Il-Tae
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.74-81
    • /
    • 2019
  • Recently, machine learning technology has had a significant impact on society, particularly in the medical, manufacturing, marketing, finance, broadcasting, and agricultural aspects of human lives. In this paper, we study how to apply machine learning techniques to foods, which have the greatest influence on the human survival. In the field of Smart Farm, which integrates the Internet of Things (IoT) technology into agriculture, we focus on optimizing the crop growth environment by monitoring the growth environment in real time. KT Smart Farm Solution 2.0 has adopted machine learning to optimize temperature and humidity in the greenhouse. Most existing smart farm businesses mainly focus on controlling the growth environment and improving productivity. On the other hand, in this study, we are studying how to apply machine learning with respect to harvest time so that we will be able to harvest fruits of the highest quality and ship them at an excellent cost. In order to apply machine learning techniques to the field of smart farms, it is important to acquire abundant voluminous data. Therefore, to apply accurate machine learning technology, it is necessary to continuously collect large data. Therefore, the color, value, internal temperature, and moisture of greenhouse-grown fruits are collected and secured in real time using color, weight, and temperature/humidity sensors. The proposed FPSML provides an architecture that can be used repeatedly for a similar fruit crop. It allows for a more accurate harvest time as massive data is accumulated continuously.

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF