• 제목/요약/키워드: Field smart agriculture

검색결과 107건 처리시간 0.023초

Characterization of Newly Recorded Talaromyces veerkampii Isolated from Field Soil in Korea based on Morphology and Multigene Sequence Analysis

  • Mahesh Adhikari;Hyun Seung Kim;Hyo Bin Park;Ki Young Kim;In Kyu Lee;Eun Jeong Byeon;Ji Min Woo;Hyang Burm Lee;Youn Su Lee
    • 한국균학회지
    • /
    • 제50권4호
    • /
    • pp.347-355
    • /
    • 2022
  • A fungal isolate belonging to the phylum Ascomycota was isolated and identified as Talaromyces veerkampii in 2017 during a survey of fungal diversity in field soils in Korea. This fungal isolate was identified and described based on macro- and micromorphological and molecular characterization. The identification was also based on partial 18S-ITS1-5.8S-ITS2-28S rDNA and calmodulin (CaM)-encoding gene sequencing data. Talaromyces veerkampii has not been previously reported in Korea. Thus, we report here a newly discovered species from soil in Korea along with its morphological and molecular characteristics.

스마트 농업을 위한 센서 데이터 기술 (Sensor Data Technology for Smart Agriculture)

  • 김영동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.861-864
    • /
    • 2014
  • 최근 들어 센서 데이터를 활용한 농작물 생장/생육 관리는 유비쿼터스 센서 네트워크 기반 스마트 농업의 핵심요소 가운데 하나로 발전하고 있다. 센서 데이터를 활용할 경우 농작물의 생산량 조절 및 생산품질 관리가 수월해지기 때문이다. 본 논문에서는 국내외 스마트 농업의 사례로 시나리오를 조사해보고 센서 데이터 기술을 비교/분석하여 봄으로서 스마트 농업용 센서 데이터 기본 기술 체계 수립에 접근해보고자 한다. 본 연구의 결과는 국내외에서 진행되고 있는 스마트 농업 표준화에 대한 기본적인 자료로 활용될 수 있을 것으로 생각된다.

  • PDF

Morphological and Molecular Characterization of the Newly Reported Penicillium pimiteouiense from Field Soil in Korea

  • Mahesh Adhikari;Hyun Seung Kim;Hyun Seung Kim;Ki Young Kim;In Kyu Lee;Eun Jeong Byeon;Ji Min Woo;Hyang Burm Lee;Youn Su Lee
    • 한국균학회지
    • /
    • 제50권3호
    • /
    • pp.205-215
    • /
    • 2022
  • Penicillium pimiteouiense was discovered in South Korea during an investigation of fungal communities in soil collected from the Gyeongsangbuk-do province. In this study, we performed molecular analysis of this fungal isolate using internal transcribed spacer rDNA, β-tubulin, and Calmodulin gene sequences. We also performed morphological analysis using five agar media, potato dextrose, oatmeal, malt extract, czapek yeast extract, and yeast extract sucrose. In this study, the molecular and morphological analyses of P. pimiteouiense with detailed descriptions and figures has been carried out.

지도학습 알고리즘 기반 3D 노지 작물 구분 모델 개발 (Development of 3D Crop Segmentation Model in Open-field Based on Supervised Machine Learning Algorithm)

  • 정영준;이종혁;이상익;오부영;;서병훈;김동수;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권1호
    • /
    • pp.15-26
    • /
    • 2022
  • 3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.

Antagonistic and Plant Growth-Promoting Effects of Bacillus velezensis BS1 Isolated from Rhizosphere Soil in a Pepper Field

  • Shin, Jong-Hwan;Park, Byung-Seoung;Kim, Hee-Yeong;Lee, Kwang-Ho;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • 제37권3호
    • /
    • pp.307-314
    • /
    • 2021
  • Pepper (Capsicum annuum L.) is an important agricultural crop worldwide. Recently, Colletotrichum scovillei, a member of the C. acutatum species complex, was reported to be the dominant pathogen causing pepper anthracnose disease in South Korea. In the present study, we isolated bacterial strains from rhizosphere soil in a pepper field in Gangwon Province, Korea, and assessed their antifungal ability against C. scovillei strain KC05. Among these strains, a strain named BS1 significantly inhibited mycelial growth, appressorium formation, and disease development of C. scovillei. By combined sequence analysis using 16S rRNA and partial gyrA sequences, strain BS1 was identified as Bacillus velezensis, a member of the B. subtilis species complex. BS1 produced hydrolytic enzymes (cellulase and protease) and iron-chelating siderophores. It also promoted chili pepper (cv. Nockwang) seedling growth compared with untreated plants. The study concluded that B. velezensis BS1 has good potential as a biocontrol agent of anthracnose disease in chili pepper caused by C. scovillei.

밭농업용 다목적 플랫폼의 견인동력 및 구동토크 예측을 위한 시뮬레이션 모델 개발 및 검증 (Development and Validation of Simulation Model for Traction Power and Driving Torque Prediction of Upland Multipurpose Platform)

  • 전현호;백승민;백승윤;홍이수;김택진;최용;김영근;이상희;김용주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권1호
    • /
    • pp.16-26
    • /
    • 2023
  • Although the upland field area of Korea is high as 44.8%, the platform optimized for the upland field is insufficient. It is necessary to develop an optimized platform for the upland field because the upland field environment is an irregular environment with many slopes. In addition, due to the characteristic of agricultural operations, the traction power and torque of the platform have to be sufficient. Therefore, in this study, a simulation model that can predict the traction power and driving torque of a crawler-type platform for the upland field was developed and validated using the specifications of the crawler platform. The simulation model was developed using Amesim (19.1, Siemens, Germany). The development of the model was conducted using the specifications of the platform. A measurement system was developed to validate the simulation model. The traction power data of the simulation model was validated with the traction force and vehicle speed. The driving torque data of the simulation model was validated with the torque of the sprocket on the crawler system. As a result of the analysis, the error between measurement and simulation results occurred within 10%, and it was determined that the traction power and driving torque prediction of the crawler platform using this model was possible.

사물 인터넷 기반의 농업 융·복합 연구 (Smart Fusion Agriculture based on Internet of Thing)

  • 채철주;조한진
    • 한국융합학회논문지
    • /
    • 제7권6호
    • /
    • pp.49-54
    • /
    • 2016
  • 사물 인터넷은 여러 산업분야에 적용되어 새로운 서비스를 창출하는 기술 중 하나로 주목 받고 있다. 사물 인터넷은 기존의 네트워크 기술을 활용하여 사물들 간의 인터넷 연결을 제공하여 서비스를 창출 할 수 있다. 사물 인터넷을 이용하여 다양한 데이터의 수집되면서 사용자 맞춤형 서비스들이 만들어 질 수 있다. 농업 분야에서도 사물 인터넷을 이용하여 지속 가능한 농업 실현과 경쟁력 제고를 추진하고 있고 농업에서의 사물 인터넷 융합은 스마트 농업으로의 확대를 추진하고 있다. 국내에서도 사물 인터넷 기술을 이용한 농업 경쟁력 제고를 위해 농림축산식품부에서는 스마트 팜 확산 대책을 마련하여 추진하고 있다. 그러므로 본 논문에서는 사물 인터넷 기반의 농업 융 복합 사례 연구를 통해 향후 스마트 농업의 발전 모델을 제시한다.

Development of threshing cylinder simulation model of combine harvester for high-speed harvesting operation

  • Min Jong Park;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Su Young Yoon;Jang Young Choi;Ryu Gap Lim;Yong Joo Kim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.457-468
    • /
    • 2023
  • The purpose of this study is to develop a high-speed combine harvester. The performance was evaluated by composing a dynamic simulation model of a threshing cylinder and analyzing the amount of threshed rice grain during threshing operations. The rotational speed of the threshing cylinder was set at 10 rpm intervals from 500 rpm until 540 rpm, based on the rated rotational speed of 507 rpm. The rice stem model was developed using the EDEM software using measured rice stem properties. Multibody dynamics software was utilized to model the threshing cylinder and tank comprising five sections below the threshing cylinder, and the threshing performance was evaluated by weighing the grain collected in the threshing tank during threshing simulations. The simulation results showed that section 1 and 2 threshed more grains compared to section 3 and 4. It was also found that when the threshing speed was higher, the larger number of grains were threshed. Only simulation was conducted in this study. Therefore, the validation of the simulation model is required. A comparative analysis to validate the simulation model by field experiment will be conducted in the future.

농산물 재배 방식에 따른 사회, 경제, 환경 영향 비교 - 농산물 소득조사 자료와 스마트팜 실태조사 보고서를 기반으로 - (Comparison of Social, Economic, and Environmental Impacts depending on Cultivation Methods - Based on Agricultural Income Survey Data and Smart Farm Survey Reports -)

  • 이지민;김태곤
    • 농촌계획
    • /
    • 제29권4호
    • /
    • pp.127-135
    • /
    • 2023
  • This study examined the impact of changes in agricultural production methods on society, the economy, and the environment. While traditional open-field farming relied heavily on natural conditions, modern approaches, including greenhouse and smart farming, have emerged to mitigate the effects of climate and seasonal variations. Facility horticulture has been on the rise since the 1990s, and recently, there has been a growing interest in smart farms due to reasons such as climate change adaptation and food security. We compared open-field spinach and greenhouse spinach using agricultural income survey data, and we also compared greenhouse tomato cultivation with smart farming tomato cultivation, utilizing data from the smart farm survey reports. The economic results showed that greenhouse spinach increased yield by 25.8% but experienced a 29% decrease in income due to equipment depreciation. In the case of tomato production in smart farms, both yield and income increased by 36-39% and 34-46%, respectively. In terms of environmental impact, we also compared fertilizer and energy usage. It was found that greenhouse spinach used 29% less fertilizer but 14% more energy compared to open-field spinach. Smart farming for tomatoes saw a negligible decrease in electricity and fuel costs. Regarding the social impact, greenhouse spinach reduced labor hours by 31%, and the introduction of smart farming for tomatoes led to an average 11% reduction in labor hours. This reduction is expected to have a positive effect on sustainable farming. In conclusion, the transition from open-field to greenhouse cultivation and from greenhouse cultivation to smart farming appears to yield positive effects on the economy, environment, and society. Particularly, the reduction in labor hours is beneficial and could potentially contribute to an increase in rural populations.

Sequential sampling method for monitoring potato tuber moths (Phthorimaea operculella) in potato fields

  • Jung, Jae-Min;Byeon, Dae-hyeon;Kim, Eunji;Byun, Hye-Min;Park, Jaekook;Kim, Jihoon;Bae, Jongmin;Kim, Kyutae;Roca-Cusachs, Marcos;Kang, Minjoon;Choi, Subin;Oh, Sumin;Jung, Sunghoon;Lee, Wang-Hee
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.615-624
    • /
    • 2020
  • An effective sampling method is necessary to monitor potato tuber moths (Phthorimaea operculella) because they are the biggest concern in potato-cultivating areas. In this study, a sequential sampling method was developed based on the results of field surveys of potato tuber moths in South Korea. Potato tuber moths were collected in fields cultivating potatoes at six sites, and their spatial distribution was investigated using the Taylor power law. The optimal sampling size and cumulative number of potato tuber moths in traps to stop sampling were determined based on the spatial distribution pattern and mean density of the collected potato tuber moths. Finally, the developed sampling method was applied to propose a control action, and its sampling efficiency was compared with that of the traditional sampling method using a binomial distribution. The potato tuber moths tended to aggregate; the optimal number was approximately 5 - 16 traps for sampling, and the number varied with the mean density of potato tuber moths according to the sampling sites. In addition, one, two, and three sites might require the following actions: Continued sampling, control, and no control, respectively. Sampling with the binomial distribution showed the minimum sample size was 12 when considering the economic threshold level. Here, we propose an effective sampling method that can be applied for future monitoring and field surveys of potato tuber moths in South Korea.