• Title/Summary/Keyword: Field observations

Search Result 1,098, Processing Time 0.023 seconds

Tracing the first galaxies with the James Webb Space Telescope

  • Tacchella, Sandro
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2021
  • I will start with presenting new results on the stellar populations of galaxies at a redshift of z=9-11, when the universe was only a few hundred million years old. By combining Hubble Space Telescope observations with Spitzer imaging data, I will show how challenging it is currently to measure basic physical properties of these objects such as star-formation rates, stellar masses and stellar ages. In particular, the current measurements greatly depend on the assumptions (priors) for the spectral energy distribution modeling. Finally, I will discuss how the James Webb Space Telescope (JWST) will revolutionize this field next year and allow us to probe and characterize the first generation of galaxies in much greater detail. Specifically, I will present an overview of the JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations (GTO) teams involving 950 hours of observation.

  • PDF

Possible Causes of Paleosecular Variation and Deflection of Geomagnetic Directions Recorded by Lava Flows on the Island of Hawaii

  • Czango Baag
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.20-20
    • /
    • 2003
  • In the summers of 1997 and 1998 and in February of 2000 we made 570 measurements of the ambient geomagnetic field 120 cm above the pavement surface of State Route 130, south of Pahoa, the island of Hawaii using a three-component fluxgate magnetometer. We measured at every 15.2 m (50 feet) interval covering a distance of 6, 310 m (20, 704 ft) where both historic and pre-historic highly magnetic basalt flows underlie. We also collected 197 core samples from eight road cuts, 489 specimens of which were subject to AF demagnetizations at 5 - 10 mT level up to a maximum field of 60 mT. We observed significant inclination anomalies ranging from a minimum of $31^{\circ}$ to a maximum $40^{\circ}$ where a uniform inclination value of $36.7^{\circ}$ (International Geomagnetic Reference Field, IGRF) was expected. Since the mean of the observed inclinations is approximately $35^{\circ}$ we assume that the study area is slightly affected by the magnetic terrain effect to a systematically shallower inclinations for being located in the regionally sloping surface of the southern side of the island (Baag, et al., 1995). We observed inclination anomalies showing wider (spacial) wavelength (160 - 600 m) and higher amplitudes in the historic lava flows area than in the northern pre-historic flows. Our observations imply that preexisting inclination anomalies such as those that we observed would have been interpreted as paleosecular variation (PSV). These inclination anomalies can best be attributed to concealed underground highly magnetic dikes, channel type lava flows, on-and-off hydrothermal activities through fissure-like openings, etc. Both the within- and between-site dispersions of natural remanent magnetization (NRM) are largest (up to ${\pm}7^{\circ}$) above the flows of 1955, while the area of pre-historic flows in the northern part of the study area exhibit the smallest dispersion. Nevertheless, mean inclinations of each historic flow of 1955 and 1790 are almost identical to that of the corresponding present field, whereas mean of NRM (after AF demagnetization) inclinations for each of the four pre-historic lava flow units is twelve to thirteen degrees lower than the present field inclination. We observed three cases of very large inclination variations from within a single flow, the best fitting curves of which are linear, second and third order polynomials each from within a single flow, whereas no present field variations are observed. This phenomena can be attributed to the notion that local magnetic anomalies on the surface of an active volcano are not permanent, but are transient. Therefore we believe that local magnetic anomalies of an active volcano may be constantly modified due to on going subsurface injections and circulations of hot material and also due to wide spacial and temporal distribution of highly magnetic basaltic flows that will constantly modify the topography which will in turn modify the local ambient geomagnetic field (Baag, et al., 1995). Our observations bring into question the general reliability of PSV data inferred from volcanic rocks, because on-going various geologic and geophysical activities associated with active volcano would continuously deflect and modify the ambient geomagnetic field.

  • PDF

An impact of meteorological Initial field and data assimilation on CMAQ ozone prediction in the Seoul Metropolitan Area during June, 2007 (기상 모델의 초기장 및 자료동화 차이에 따른 수도권 지역의 CMAQ 오존 예측 결과 - 2007년 6월 수도권 고농도 오존 사례 연구 -)

  • Lee, Dae-Gyun;Lee, Mi-Hyang;Lee, Yong-Mi;Yoo, Chul;Hong, Sung-Chul;Jang, Kee-Won;Hong, Ji-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.609-626
    • /
    • 2013
  • Air quality models have been widely used to study and simulate many air quality issues. In the simulation, it is important to raise the accuracy of meteorological predicted data because the results of air quality modeling is deeply connected with meteorological fields. Therefore in this study, we analyzed the effects of meteorological fields on the air quality simulation. This study was designed to evaluate MM5 predictions by using different initial condition data and different observations utilized in the data assimilation. Among meteorological scenarios according to these input data, the results of meteorological simulation using National Centers for Environmental Prediction (Final) Operational Global Analysis data were in closer agreement with the observations and resulted in better prediction on ozone concentration. And in Seoul, observations from Regional Meteorological Office for data assimilations of MM5 were suitable to predict ozone concentration. In other areas, data assimilation using both observations from Regional Meteorological Office and Automatical Weather System provided valid method to simulate the trends of meteorological fields and ozone concentrations. However, it is necessary to vertify the accuracy of AWS data in advance because slightly overestimated wind speed used in the data assimilation with AWS data could result in underestimation of high ozone concentrations.

MONITORING OF GAMMA-RAY BRIGHT AGN: THE MULTI-FREQUENCY POLARIZATION OF THE FLARING BLAZAR 3C 279

  • KANG, SINCHEOL;LEE, SANG-SUNG;BYUN, DO-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.257-265
    • /
    • 2015
  • We present results of long-term multi-wavelength polarization observations of the powerful blazar 3C 279 after its γ-ray flare on 2013 December 20. We followed up this flare with single-dish polarization observations using two 21-m telescopes of the Korean VLBI Network. Observations carried out weekly from 2013 December 25 to 2015 January 11, at 22 GHz, 43 GHz, 86 GHz simultaneously, as part of the Monitoring Of GAmma-ray Bright AGN (MOGABA) program. We measured 3C 279 total flux densities of 22–34 Jy at 22 GHz, 15–28 Jy (43 GHz), and 10–21 Jy (86 GHz), showing mild variability of ≤ 50 % over the period of our observations. The spectral index between 22 GHz and 86 GHz ranged from −0.13 to −0.36. Linear polarization angles were 27°–38°, 30°–42°, and 33°–50° at 22 GHz, 43 GHz, and 86 GHz, respectively. The degree of linear polarization was in the range of 6–12 %, and slightly decreased with time at all frequencies. We investigated Faraday rotation and depolarization of the polarized emission at 22–86 GHz, and found Faraday rotation measures (RM) of −300 to −1200 rad m−2 between 22 GHz and 43 GHz, and −800 to −5100 rad m−2 between 43 GHz and 86 GHz. The RM values follow a power law with a mean power law index a of 2.2, implying that the polarized emission at these frequencies travels through a Faraday screen in or near the jet. We conclude that the regions emitting polarized radio emission may be different from the region responsible for the 2013 December γ-ray flare and are maintained by the dominant magnetic field perpendicular to the direction of the radio jet at milliarcsecond scales.

NO EXCESS OF STAR FORMATION IN THE z = 1.4 STRUCTURE: Hα OBSERVATIONS OF THE RADIO-LOUD AGN 6CE1100+3505 FIELD

  • Shim, Hyunjin;Lee, Jong Chul;Hwang, Narae;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.6
    • /
    • pp.235-244
    • /
    • 2019
  • We present the results of near-infrared imaging observations of the galaxy overdensity around the z = 1.44 radio-loud active galactic nucleus (AGN) 6CE1100+3505, which was carried out with the purpose of sampling the redshifted Hα emission from the actively star-forming galaxies that could constitute the overdensity. The existence of the structure around this AGN was spectroscopically confirmed by previous grism observations which are however limited to the central region. Using the CH4Off narrow/medium-band and H broad band filters in the Wide Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT), we constructed a sample of objects that show a flux excess in the CH4Off band due to line emission. The emission line flux is ~ 4.9 × 10-16 erg s-1 cm-2, corresponding to a star formation rate (SFR) of ~ 50 M yr-1 for galaxies at redshifts z ~ 1.4. None of the galaxies with medium-band flux excess is located within 1 Mpc from the central AGN, and there is no evidence that the selected galaxies are associated with the proposed cluster. Along with the star formation quenching near the center that was found from the previous grism observations, the lack of extreme starbursts in the structure suggests that at z ~ 1.4, overdense regions are no longer favorable locations for vigorous star formation.

Monitoring of Gamma-ray Bright AGN : The Multi-Frequency Polarization of the Flaring Blazar 3C 279

  • Kang, Sincheol;Lee, Sang-Sung;Byun, Do-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.65.1-65.1
    • /
    • 2016
  • We present results of long-term multi-wavelength polarization observations of the powerful blazar 3C 279 after its ${\gamma}$-ray flare on 2013 December 20. We followed up this flare by means of single-dish polarization observations with two 21-m telescopes of the Korean VLBI Network, carried out weekly from 2013 December 25 to January 11, and at 22, 43, and 86 GHz, simultaneously. These observations were part of the Monitoring Of GAmma-ray Bright AGNs (MOGABA) program. We Measured 3C 279 total flux densities at 22, 43, and 86 GHz, showing a mild variability of a factor of ${\leq}50%$ over the period of our observations. The spectral index ranged from -0.13 to -0.36 at between 22 and 86 GHz. The degree of linear polarization was in the range of 6 ~ 12 %, and slightly decreased with time at all frequencies. We found Faraday rotation measures (RM) of -300 to $-1200rad\;m^{-2}$ between 22 and 43 GHz, and -800 to $-5100rad\;m^{-2}$ between 43 and 86 GHz. The RM values follow a power law ${\mid}RM{\mid}{\propto}{\nu}^{\alpha}$, with a mean ${\alpha}$ of 2.2, implying that the polarized emission at these frequencies travels through a Faraday screen in or near the jet. We conclude that the regions emitting polarized radio emission may be different from the region responsible for the 2013 December ${\gamma}$-ray flare, and that these regions are maintained by the dominant magnetic field perpendicular to the direction of the radio jet at milliarcsecond scales.

  • PDF

Interferometric Monitoring of Gamma-ray Bright AGNs:Measuring the Magnetic Field Strength of 4C+29.45

  • Kang, Sincheol;Lee, Sang-Sung;Hodgson, Jeffrey;Algaba, Juan-Carlos;Lee, Jee Won;Kim, Jae-Young;Park, Jongho;Kino, Motoki;Kim, Daewon;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2021
  • We present the results of multi-epoch, multi-frequency monitoring of a blazar 4C +29.45, which was regularly monitored as part of the Interferometric Monitoring of GAmma-ray Bright AGNs program - a key science program of the Korean Very long baseline interferometry Network (KVN). Observations were conducted simultaneously at 22, 43, 86 and 129 GHz during the 4 years from December 2012 to December 2016. We also used additional data from the 15 GHz Owens Valley Radio Observatory (OVRO) monitoring program. From the 15 GHz light curve, we estimated the variability time scales of the source during several radio flux enhancements. We found that the source experiencesd 6 radio flux enhancements with variability time scales of 9-187 days during the observing period, yielding corresponding variability Doppler factors of 9-27. From the multi-frequency simultaneous KVN observations, we were able to obtain accurate radio spectra of the source and hence to more precisely measure the turnover frequencies 𝜈r of synchrotron self-absorbed (SSA) emission with a mean value of ${\bar{\nu}_r}=28.9GHz$. Using jet geometry assumptions, we estimated the size of the emitting region at the turnover frequency. Taking into account these results, we found that the equipartition magnetic field strength is up to two orders of magnitudes higher than the SSA magnetic field strength (0.6-99 mG). This is consistent with the source being particle dominated.

  • PDF

MAGNETOSTATIC MODELS OF STARSPOTS

  • YUN HONG SIK;PARK JONG-SUH
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.89-98
    • /
    • 1993
  • Magnetostatic models of starspots of late type main sequence stars$(G5V\~K5V)$ have been constructed to investigate their physical characteristics by using the similarity law suggested by Schluter and Temesvary(1958) and later employed by Deinzer(1965) and Yun(1968). The starspots are assumed to be single, circular and in horizontal magnetostatic equilibrium. In the present study we considered only those model spots whose area covers less than $12\%$ of the entire stellar surface as suggested by observations. The computed surface field strength of our model spots ranges from $10^3$\;to\;several\;10^3$ gauss and their magnetic flux is found to be $10\~100$ times that of sunspots. The field strength is sensitive to spectral type, which increases with later spectral type. In contrast to the field strength, the area of starspots depends strongly on the total magnetic flux. Finally, it is noted that the computed field strength of model spots belonging to $G0V\~G5V$ falls below the equipartition field strength at their parent stellar surface unless the coverage is less than $2\%$. This suggests that the observed spot on $G0V\~G5V$ stars is likely to be a group of small starspots.

  • PDF

Numerical Study of the Dynamics Connecting a Solar Flare and a Coronal Mass Ejection

  • Inoue, Satoshi;Kang, Jihye;Choe, Gwangson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.97.1-97.1
    • /
    • 2014
  • We clarify the dynamics connecting a solar flare and a coronal mass ejection (CME) based on the results of a magnetohydrodynamic (MHD) simulation starting from a nonlinear force-free field (NLFFF) in Inoue et al. 2014. In previous studies, many authors proposed numerous candidates for triggering processes of a solar flare and the associated CME. Among them, the tether-cutting reconnection or the torus instability has been supported by recent simulations and observations. On the other hand, our MHD simulation in accordance with more realistic situations show that highly twisted field lines are first produced through a tether-cutting reconnection between the twisted field lines in the NLFFF, and then the newly formed, strongly twisted field erupts away from the solar surface because of a loss of equilibrium. This dynamics corresponds to the onset of a solar flare. Furthermore we have found that the strongly twisted erupting field reconnect with the weakly twisted ambient field during the eruption, creating a large flux tube, and then it rises over a critical height of the torus instability to trigger a CME. From these results, we conclude that the coupled process of tether-cutting reconnection and torus instability is important in the flare-CME relationship.

  • PDF

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF