• Title/Summary/Keyword: Field modeling

Search Result 2,659, Processing Time 0.03 seconds

A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code (입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구)

  • You, Kwang Ho;Lee, Chang Su;Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Study on Status of Utilizing 3D Printing in Fashion Field (패션분야의 3D 프린팅 활용 현황에 관한 연구)

  • Kim, Hyo-Sook;Kang, In-Ae
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.2
    • /
    • pp.125-143
    • /
    • 2015
  • This study has investigated the status of utilizing 3D printing in fashion field in order to keep up with the trend for 3D printing technology to be realized in all industries so that the materials and the modeling modes may be figured out. The following is the findings. The materials used most in 3D printing in fashion field are PA, PLA, TPU, multi-material, ABS and metal. PA, TPU and Multi-material have so much excellent flexibility and strength that they are widely used for garment, shoes and such fashion items as bags. But PLA, ABS and metal are scarcely used for garment because PLA is easily biodegradable in the air, ABS generates harmful gas in the process of manufacture and metal is not flexible, while all of these three are partly used for shoes and accessories. The modeling modes mainly applied for 3D printing in fashion field are SLS, SLA, FDM and Polyjet. SLS, which is of a powder-spraying method, is used for making 3D textile seen just like knitting. Polyjet method, which has higher accuracy and excellent flexibility, can be used for expressing diverse colors, and accordingly it is used a lot for high-quality garment, while SLA and FDM method are found to be mostly used for manufacturing shoes and accessories rather than for making garment because they are easily shrunk to result in deformation.

  • PDF

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

An Analytical Modeling and Simulation of Dual Material Double Gate Tunnel Field Effect Transistor for Low Power Applications

  • Arun Samuel, T.S.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.247-253
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a Dual Material Double Gate tunnel field effect transistor (DMDG TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunnelling generation rate and thus we numerically extract the tunnelling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

A Study on Issue Tracking on Multi-cultural Studies Using Topic Modeling (토픽 모델링을 활용한 다문화 연구의 이슈 추적 연구)

  • Park, Jong Do
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.273-289
    • /
    • 2019
  • The goal of this study is to analyze topics discussed in academic papers on multiculture in Korea to figure out research trends in the field. In order to do topic analysis, LDA (Latent Dirichlet Allocation)-based topic modeling methods are employed. Through the analysis, it is possible to track topic changes in the field and it is found that topics related to 'social integration' and 'multicultural education in schools' are hot topics, and topics related to 'cultural identity and nationalism' are cold topics among top five topics in the field.

Topics and Trends in Metadata Research

  • Oh, Jung Sun;Park, Ok Nam
    • Journal of Information Science Theory and Practice
    • /
    • v.6 no.4
    • /
    • pp.39-53
    • /
    • 2018
  • While the body of research on metadata has grown substantially, there has been a lack of systematic analysis of the field of metadata. In this study, we attempt to fill this gap by examining metadata literature spanning the past 20 years. With the combination of a text mining technique, topic modeling, and network analysis, we analyzed 2,713 scholarly papers on metadata published between 1995 and 2014 and identified main topics and trends in metadata research. As the result of topic modeling, 20 topics were discovered and, among those, the most prominent topics were reviewed in detail. In addition, the changes over time in the topic composition, in terms of both the relative topic proportions and the structure of topic networks, were traced to find past and emerging trends in research. The results show that a number of core themes in metadata research have been established over the past decades and the field has advanced, embracing and responding to the dynamic changes in information environments as well as new developments in the professional field.

Defects Nucleation in the Liquid Crystal Director Field from Inhomogeneous Surface

  • Lee, Gi-Dong;Lee, Jong-Wook;Ko, Tae-Woon;Lee, Joun-Ho;Oh, Chang-Ho;Choi, Hyun-Chul;Kim, Jae-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1159-1162
    • /
    • 2004
  • A modeling of the nucleation and dynamical behavior of defects from an inhomogeneous surface configuration using fast Q-tensor method is realized. On modeling the defect nucleation and dynamics, A fast Q-tensor method is applied. From the numerical modeling, we confirmed that surface inhomogeneity which makes strong strain energy in the local liquid crystal director field could cause defects. Experimental result has compared with numerical modeling in order to verify the simulation of the defect nucleation.

  • PDF

Identifying research trends in the emergency medical technician field using topic modeling (토픽모델링을 활용한 응급구조사 관련 연구동향)

  • Lee, Jung Eun;Kim, Moo-Hyun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.26 no.2
    • /
    • pp.19-35
    • /
    • 2022
  • Purpose: This study aimed to identify research topics in the emergency medical technician (EMT) field and examine research trends. Methods: In this study, 261 research papers published between January 2000 and May 2022 were collected, and EMT research topics and trends were analyzed using topic modeling techniques. This study used a text mining technique and was conducted using data collection flow, keyword preprocessing, and analysis. Keyword preprocessing and data analysis were done with the RStudio Version 4.0.0 program. Results: Keywords were derived through topic modeling analysis, and eight topics were ultimately identified: patient treatment, various roles, the performance of duties, cardiopulmonary resuscitation, triage systems, job stress, disaster management, and education programs. Conclusion: Based on the research results, it is believed that a study on the development and application of education programs that can successfully increase the emergency care capabilities of EMTs is needed.

Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph Methodology

  • McNelles, Phillip;Lu, Lixuan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1192-1205
    • /
    • 2016
  • Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the "IEEE 1164 standard," registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.