• Title/Summary/Keyword: Field heat

Search Result 2,032, Processing Time 0.026 seconds

Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • In this paper, the thermoelastic interactions in a two-dimension porous body are studied. This problem is solved by using the Green and Lindsay (GL) generalized thermoelasticity model under fractional time derivative. The derived approaches are estimated. with numeral results which are applied to the porous mediums in simplifying geometrical. The bounding plane surface of the present half-space continuum is subjected to a pulse heat flux. We use the Laplace-Fourier transforms methods with the eigenvalues approach to solve the problem. The numerical solutions for the field functions are obtained numerically using the numerical Laplace inversion technique. The effects of the fractional parameter and the thermal relaxation times on the temperature field, the displacement field, the change in volume fraction field of voids distribution and the stress fields have been calculated and displayed graphically and the obtained results are discussed.

Numerical Analysis on the Control of Particle-laden Flow Using Electromagnetic Field (전기자장에 의한 혼상류의 제어에 관한 수치해석)

  • NAM Seong-Won;KAMIYAMA Shin-icki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.125-130
    • /
    • 1996
  • A numerical analysis is conducted on heat transfer and fluid flow of a plasma spraying process under the DC-RE hybrid electromagnetic field. Plasma flow is analyzed by using Eulerian approach and the equation of particle motion is simultaneously solved using a trajectory analysis with a lumped-heat-capacity model. Axisymmetric two dimensional electromagnetic fields governed by Maxwell's equations are solved based on a vector potential concept. The effects of the RF electromagnetic field on the temperature and velocity fields of the turbulent plasma flow are clarified. Control characteristics of phase changes and dispersed features of particles by applying the RF electromagnetic field are also clarified in an attempt to improve the plasma spraying process

  • PDF

Real-time estimation of Temperature Distribution of a Ball Screw System Using Modal Analysis and Observer (모드해석과 관측기에 의한 볼스크류 온도분포의 실시간 예측)

  • 김태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.635-640
    • /
    • 2000
  • Thermal deformation of machine tools can be evaluated from the analysis of the whole temperature field. However, it is extremely inefficient and impossible to acquire the whole temperature field by measuring temperatures of every point. So, a temperature estimator, which can estimate the whole temperature field from the temperatures of just a few points, is required. In this paper, 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. and then state observer is designed to estimate the intensity of heat source and the whole temperature field in real-time. The reliability of this estimator is verified by making a comparison between solutions by the proposed method and the exact solutions of examples. The proposed method is applied to the estimation of temperature distribution in a ball screw system.

  • PDF

The Study on the Application of Heat Recovery Aluminium Heat Exchanger in HVAC System (배기열회수 알루미늄 열교환기의 공조시스템 적용에 관한 연구)

  • Park, Yong-Hyo;Kim, Dong-Gyu;Kim, Geun-Oh;Jung, Yong-Hwan;Kum, Jong-Soo;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1272-1276
    • /
    • 2009
  • The purpose of this study is to introduce wasted heat recovery heat exchanger for different kind of material in HVAC systems in field. For the purpose of estimating the large volume rotary heat exchanger and cross flow plate heat exchanger in heat recovery ventilator.

  • PDF

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.149-152
    • /
    • 2007
  • The numerical simulations on the heat transfer and flow field were carried out for the improvement of the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The present geometry of the heat exchanger causes poor heat transfer since the air inside shell dose not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle.

  • PDF

Numerical analysis of the vertical tube-in-tube ground coil heat exchanger (수직으로 매설된 이중관형 지중 열교환기에 대한 해석적인 연구)

  • 유지오;금성민;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.339-348
    • /
    • 1999
  • A computer model was developed in order to predict the temperature distribution and the performance of the vertical tube-in-tube ground coil heat exchanger. This model has been validated by experimental results conducted by ORNL. The heat exchanger performance with the variation of the length is calculated and compared. As results, the heat exchanger performance is proportional to the length but the performance per unit length decreases. The minimum performance of 70m - PVC heat exchanger during cyclic operation for a week is obtained 20,054kJ/h for cooling operation and 13,915kJ/h for heating operation. And minimum temperature difference is $4.64^{\circ}C$ for cooling operation and $2.64^{\circ}C$ for heating operation. In each case, it is noted that the temperature difference between the pipe and the far-field occurs within 0.8m from the heat exchanger.

  • PDF

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.

THERMAL DIFFUSION AND RADIATION EFFECTS ON UNSTEADY MHD FREE CONVECTION HEAT AND MASS TRANSFER FLOW PAST A LINEARLY ACCELERATED VERTICAL POROUS PLATE WITH VARIABLE TEMPERATURE AND MASS DIFFUSION

  • Venkateswarlu, M.;Ramana Reddy, G.V.;Lakshmi, D.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.257-268
    • /
    • 2014
  • The objective of the present study is to investigate thermal diffusion and radiation effects on unsteady MHD flow past a linearly accelerated vertical porous plate with variable temperature and also with variable mass diffusion in presence of heat source or sink under the influence of applied transverse magnetic field. The fluid considered here is a gray, absorbing/emitting radiation but a non-scattering medium. At time t > 0, the plate is linearly accelerated with a velocity $u=u_0t$ in its own plane. And at the same time, plate temperature and concentration levels near the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the closed analytical method. The velocity, temperature, concentration, skin-friction, the rate or heat transfer and the rate of mass transfer are studied through graphs in terms of different physical parameters like magnetic field parameter (M), radiation parameter (R), Schmidt parameter (Sc), Soret number (So), Heat source parameter (S), Prandtl number (Pr), thermal Grashof number (Gr), mass Grashof number (Gm) and time (t).

Numerical Heat Transfer Analysis applying Coupled Electromagnetic Characteristics and Convection Boundary Condition (전자계 결합특성 및 대류 경계조건을 적용한 수치 해석적 열전달 해석)

  • Kim, Chang-Ki;Kim, Shang-Hoon;Jung, Sang-Yong
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.55-61
    • /
    • 2009
  • The heat transfer analysis applying finite element method has been carried out. Particularly, the convection boundary condition associated with the mixed boundary condition is numerically formulated by the Galerkin method analogous to the magnetic field problem. Also, the coupled electromagnet-thermal field analysis by the proposed heat transfer coefficient computation algorithm is executed to enhance the accuracy of solutions. Finally, the validity of the proposed results is verified by comparison with the measured ones.

  • PDF

Numerical analysis of fluid flow and thermal fields in the vertical fluidized bed heat exchanger (수직형 순환유동층 열교환기에서의 유체유동과 온도장의 수치해석)

  • Lee, B.C.;Kang, H.K.;Lee, M.S.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.24-29
    • /
    • 2012
  • The numerical analysis by using CFX 11.0 commercial code was done for prediction of fluid flow and thermal field in the vertical heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the fluid flow and temperatures in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which the solid particles of glasses (3 $mm{\Phi}$) were used in the fluidized bed with a smooth tube. The effect of circulation on the distance(L) of tube inlet and baffle plate was also examined. The present experimental and numerical results showed that the particles in the distance (Ds) of 15 mm showed a more efficient circulation without stacked the space and the LMTD(Log Mean Temperature Difference) in the fluidized bed type was much lower than that in the typical type shell and tube heat exchanger.