• Title/Summary/Keyword: Field engineering

Search Result 24,363, Processing Time 0.062 seconds

Pseudo-DC Resistivity Survey for Site Investigation at Urban Areas with Ambient Electrical Noises (전기잡음 간섭이 있는 도심지 지역 탐사를 위한 유사직류 전기비저항 기법)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.37-44
    • /
    • 2010
  • Recently, urban retrofit and extension, development of new buildings and facilities, and construction of underground structures like subway tunnels in urban areas give rise to significance of site investigation at urban areas. However, ambient electric noises, traffic vibrations, embedded objects work as obstacles to high-quality and accuracy in site investigation at urban areas. In this paper, a new technique called the pseudo-DC resistivity survey (in brief, PDC-R) was proposed to minimize the adverse effect of ambient electrical noises in resistivity survey. PDC-R technique utilizes an AC current with frequency range of 0.1 to 1.0 Hz rather than DC current, which is used for conventional resistivity survey. The motivation of using low-frequency AC current is to avoid 60-Hz components or its multiples in the resistivity survey which ambient noises are mostly composed of. The implementation of PDC-R technique also included the parametric study on skin effect, frequency effect and current-level effect, which led to the determination of optimal values of frequency and current level for PDC-R survey. The reliability and feasibility of PDC-R technique was verified through field tests, accompanied by the comparison with DC resistivity survey and CapSASW tests.

Development of a Model for Predicting Modulus on Asphalt Pavements Using FWD Deflection Basins (FWD 처짐곡선을 이용한 아스팔트 포장구조체의 탄성계수 추정 모형 개발)

  • Park, Seong Wan;Hwang, Jung Joon;Hwang, Kyu Young;Park, Hee Mun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.797-804
    • /
    • 2006
  • A development of regression model for asphalt concrete pavements using Falling Weight Deflectometer deflections is presented in this paper. A backcalculation program based on layered elastic theory was used to generate the synthetic modulus database, which was used to generate 95% confidence intervals of modulus in each layer. Using deflection basins of FWD data used in developing this procedure were collected from Pavement Management System in flexible pavements. Assumptions of back-calculation are that one is 3 layered flexible pavement structure and another is depth to bedrock is finite. It is found that difference of between 95% confidence intervals and modulus ranges of other papers does not exist. So, the data of 95% confidence intervals in each layer was used to develop multiple regression models. Multiple regression equations of each layer were established by SPSS, package of Statics analysis. These models were proved by regression diagnostics, which include case analysis, multi-collinearity analysis, influence diagnostics and analysis of variance. And these models have higher degree of coefficient of determination than 0.75. So this models were applied to predict modulus of domestic asphalt concrete pavement at FWD field test.

Numerical Analyses on the Behavioral Characteristics of Side of Drilled Shafts in Rocks and Suggestion of Design Charts (수치해석을 통한 암반에 근입된 현장타설말뚝의 주면부 거동특성 분석 및 설계차트 제시)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.407-419
    • /
    • 2006
  • Situations where support is provided solely in shaft resistance of drilled shafts are where the base of the drilled hole cannot be cleaned so that it is uncertain that any end bearing support will be developed. Alternatively, where sound bed rock underlies low strength overburden material, it may be possible to achieve the required support in end bearing on the rock only, and assume that no support is developed in the overburden. However, where the drilled shaft is drilled some depth into sound rock, a combination of side wall resistance and end bearing can be assumed. Both theoretical and field studies of the performance of rock socketed drilled shafts show that the major portion of applied load is usually carried in side wall resistance. Normal stress at the rock-concrete interface is induced by two mechanisms. First, application of a compressive load on the top of the pile results in elastic dilation of the concrete, and second, shear displacement at the rough surface of the drilled hole results in mechanical dilation of the interface. If the stiffness of the material surrounding the socket with respect to normal displacement is constant, then the normal stress will increase with increasing applied load, and there will be a corresponding increase in the shear strength. In this study, the numerical analyses are carried out to investigate the behavioral characteristics of side of rock socketed drilled shafts. The cause of non-linear head load-settlement relationship and failure mechanism at side are also investigated properly and the design charts are suggested and verified for the leading to greater efficiency and reliability in the pile design.

An Estimation on the Applicability of Hollow FRP Soil Nailing System (중공식 FRP쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Koh, Hyung-Seon;Han, Yong-Hee;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.385-393
    • /
    • 2006
  • Soil nailing is a reinforcement method used for stabilizing excavated walls or slopes. Due to its much advantages such as ease of construction and economical efficiency, use of soil nailing is increased. However, the soil nail has much disadvantages for use in urban area. The soil nail needs to be installed inevitably beyond private land boundary, which causes rent for use. For this reason, removable soil nailing system was developed. However, the removal rate of this system is just about 50¢¦70%. To resolve this problem, the Fiber Reinforced Plastic (FRP) soil nailing system which does not need to be removed and allows for the installation beyond private land, is developed. In this paper, through theoretical and experimental studies in laboratory and field such as prototype tests, pullout tests, we evaluate the stability and behavior characteristics of the FRP soil nailing system. And, numerical analyses using FLAC2D were performed with respect to various soil conditions, where prototype test for excavation wall and pullout tests were carried out. As a result of this study, the FRP soil nailing systems show similar behavior characteristics with those of removable soil nailing system. Finally, considering the serviceability and mechanical stability of FRP soil nailing systems, it is enough to be used as a good alternative of general soil nailing system.

Basic Study of Applying Traffic Calming Method in Korea (Traffic Calming 기법의 국내적용 위한 기초적 연구)

  • Oh, Jun Seo;Oh, Seung Hwoon;Lee, Byeong Saeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.553-557
    • /
    • 2006
  • The traffic flow of a vehicle is an essential existence in a city, and is a part of a living aiming at the city citizen's activity. Hereafter, this flow will increase gradually, thus even a proper countermeasure against this will be required to arrange for. However, it will need to present a proper countermeasure against a threat of the roads surrounding a residential area where is a living space of the city citizen, being occurred according to this. It aims to maximize the effect of Traffic Calming technique through maintaining the special environment and facilities being possessed only by our country's living roads. This study did carry out and consider the analysis of a primary factor through a field survey, an experiment and SPSS, in relation to an issue of which influence of factors as for the domestic traffic environment different from a foreign country has on introducing and applying the technique of Traffic Calming to the domestic nation. As the results through the evaluation experiment and the primary-factor analysis, it could be seen being influenced largely by six factors such as a pedestrian's safety facilities which influence on the traffic environment in case of applying Traffic Calming, a mechanical factor to lower speed, a factor as to a street scene, a factor as to a pedestrian's passing condition given, a factor of a pedestrian's convenience and environment, and a visual factor of a vehicle's deceleration.

Development of Sequential Mixing Model for Analysis of Shear Flow Dispersion (전단류 분산 해석을 위한 순차혼합모형의 개발)

  • Seo, Il Won;Son, Eun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.335-344
    • /
    • 2006
  • In this study, sequential mixing model (SMM) was proposed based on the Taylor's theory which can be summarized as the fact that longitudinal advection and transverse diffusion occur independently and then the balance between the longitudinal shear and transverse mixing maintains. The numerical simulation of the model were performed for cases of different mixing time and transverse velocity distribution, and the results were compared with the solutions of 1-D longitudinal dispersion model (1-D LDM) and 2-D advection-dispersion model (2-D ADM). As a result it was confirmed that SMM embodies the Taylor's theory well. By the comparison between SMM and 2-D ADM, the relationship between the mixing time and the transverse diffusion coefficient was evaluated, and thus SMM can integrate 2-D ADM model as well as 1-D LDM model and be an explanatory model which can represents the shear flow dispersion in a visible way. In this study, the predicting equation of the longitudinal dispersion coefficient was developed by fitting the simulation results of SMM to the solution of 1-D LDM. The verification of the proposed equation was performed by the application to the 38 sets of field data. The proposed equation can predict the longitudinal dispersion coefficient within reliable accuracy, especially for the river with small width-to-depth ratio.

An Experimental Study on a Characteristics of Flow around Groynes for Groyne Spacing (수제 설치간격에 따른 수제주변 흐름특성에 관한 실험 연구)

  • Kang, Joon Gu;Yeo, Hong Koo;Roh, Young Sin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.271-278
    • /
    • 2006
  • In design of groyne series, groyne spacing is a important factor and have an effect on not only the characteristics of backward and recirculation flow in groyne zone but also flow field in main channel. It is necessary study about flow pattern of recirculation zone and main channel that is a cause of bad change, local scour and bank erosion by groyne spacing. In this study, flow variation of groyne zone and main chanel for spacing of groynes were analyzed from the experiment results in order to offer a fundamental data that can be used to decide the proper groyne spacing. Experiments were conducted 12 cases for groyne spacing(L) by groyne length(l) rate and the velocity profile was measured using LSPIV and ADV. From the results, two vortex flows developed in recirculation zone for L/l=3~9 and three vortex flows developed over L/l=10. The velocity of backward flow in recirculation zone was decreased up to 20% over L/l=4. The velocity of main channel flow was increased from 1.3 to 2.0 times by groyne spacing and the rate of velocity increased by increasing groyne spacing. The maximum velocity occurred in 0.7~0.8 times of groyne spacing downstream of upper groyne.

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.

Comparisons on the Interface Shear Strength of Geosynthetics Evaluated by Using Various Kinds of Testing Methods (다양한 시험법에 의해 산정된 토목섬유 사이의 접촉면 전단강도 비교)

  • Seo, Min-Woo;Oh, Myoung-Hak;Yoon, Hyun-Suk;Park, Jun-Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.73-80
    • /
    • 2006
  • The shear behavior of four different interfaces consisting of four types of geosynthetics was investigated, and both static and dynamic test for the geosynthetic interfaces were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board test was compared with calculated values from large direct shear tests. The comparison results indicated that direct shear tests show high possibility to over-predict the shear strength in the low normal stress range where direct shear tests are not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table test, it was found that the friction angle might be different depending on the test method and normal stresses applied in the research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field with using the geosynthetic materials installed in the site.

Estimation of the Shaft Resistance of Rock-Socketed Drilled Shafts using Geological Strength Index (GSI를 이용한 암반에 근입된 현장타설말뚝의 주면저항력 산정)

  • Cho, Chun Whan;Lee, Hyuk Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.25-31
    • /
    • 2006
  • It is common to use the unconfined compressive strength (UCS) of intact rock to estimate the shaft resistance of rock socketed drilled shaft. Therefore the most design manuals give a guide to use the UCS of rock core to estimate the shaft resistance of rock-socketed drilled shaft. Recently, however the design manuals for highway bridge (KSCE, 2001) and of AASHTO (2000) were revised to use the UCS of rock mass with RQD instead of the UCS of rock core so that the estimated resistance could be representative of field conditions. Questions have been raised in application of the new guide to the domestic main bed rock types. The intrinsic drawbacks in terms of RQD were comprised in the questions, too. As the results, in 2002 the new guide in the design manual for highway bridge (KSCE, 2001) were again revised to use the UCS of rock core to estimate the shaft resistance of rock-socketed drilled shafts. In this paper, various methods which can estimate the UCS of rock mass from intact rock core were reviewed. It seems that among those, the Hoek-Brown method is very reliable and practical for the estimation of the UCS of rock mass from rock cores. As the results, using the Hoek-Brown failure criterion a modified guide for the estimation of the shaft resistance of rock-socketed drilled shafts was suggested in this paper. Through a case study it is shown that the suggested method gives a good agreement with the measured data.