• Title/Summary/Keyword: Field emitter

Search Result 265, Processing Time 0.028 seconds

Fabrication of Field Emitter Arrays by Transferring Filtered Carbon Nanotubes onto Conducting Substrates

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.311-311
    • /
    • 2009
  • Carbon nanotubes (CNTs) belong to an ideal material for field emitters because of their superior electrical, mechanical, and chemical properties together with unique geometric features. Several applications of CNTs to field emitters have been demonstrated in electron emission devices such as field emission display (FED), backlight unit (BLU), X-ray source, etc. In this study, we fabricated a CNT cathode by using filtration processes. First, an aqueous CNT solution was prepared by ultrasonically dispersing purified single-walled CNTs (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). The aqueous CNT solution in a milliliter or even several tens of micro-litters was filtered by an alumina membrane through the vacuum filtration, and an ultra-thin CNT film was formed onto the alumina membrane. Thereafter, the alumina membrane was solvated by acetone, and the floating CNT film was easily transferred to indium-tin-oxide (ITO) glass substrate in an area defined as 1 cm with a film mask. The CNT film was subjected to an activation process with an adhesive roller, erecting the CNTs up to serve as electron emitters. In order to measure their luminance characteristics, an ITO-coated glass substrate having phosphor was employed as an anode plate. Our field emitter array (FEA) was fairly transparent unlike conventional FEAs, which enabled light to emit not only through the anode frontside but also through the cathode backside, where luminace on the cathode backside was higher than that on the anode frontside. Futhermore, we added a reflecting metal layer to cathode or anode side to enhance the luminance of light passing through the other side. In one case, the metal layer was formed onto the bottom face of the cathode substrate and reflected the light back so that light passed only through the anode substrate. In the other case, the reflecting layer coated on the anode substrate made all light go only through the cathode substrate. Among the two cases, the latter showed higher luminance than the former. This study will discuss the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the either side.

  • PDF

수성 고분자 - 탄소나노튜브 복합 분산 용액을 이용한 전계 방출 소자의 제작

  • Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.66.2-66.2
    • /
    • 2011
  • A polymer-based multi-walled carbon nanotube (MWCNT) field emission device was fabricated from a composite dispersion of MWCNTs and waterborne polymethyl methacrylate (PMMA). The waterborne PMMA synthesized through the emulsion polymerization method was added to minimize the reagglomeration of dispersed MWCNTs with surfactants in water, and increase the adhesion between the and the substrate. The field emission properties of the fabricated device were optimized by adjusting the density of the emitter and the adhesion between the MWCNTs and the substrate. These were done by controlling the polymer concentration added to the MWCNT dispersion, as well as the amount of spray coating on the substrate. The results confirm the successful fabrication of a polymer-based MWCNT field emission device with a low field of 1.07 $V/{\mu}m$ and a good electric field enhancement factor of 2445. The device was fabricated by adding 0.8 mg/mL of polymer solution to the MWCNT dispersion and applying 20 cycles of spray coating. Application of this same MWCNT/polymer composite solution to a flexible polymer substrate also resulted in the successful fabrication of an electric field emission device with uniform emission and long time stability.

  • PDF

Effect of CNT Particle Dispersion in CNT Paste on Field Emission Characteristics in Carbon Nanotube Cathode (탄소나노튜브의 분산이 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향)

  • Ahn B. G.;Seung M. S.;Shin H. Y.;Kim D. H.;Kim T. S.;Cho Y. R.
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.807-812
    • /
    • 2004
  • The uniformity of emission mage and field emission properties of carbon nanotube(CNT) cathodes dependence on CNT particle dispersion were investigated for field emission displays. We used multi-walled carbon nanotubes (MWNTs) synthesized by CVD method as the field emitter materials. CNT dispersion in CNT ink was carried out by ultrasonication and shaking methods. According to CNT dispersion conditions, the uniformity of emission image and field emission properties of CNT cathodes were greatly affected. The smaller particles of filler materials and CNT powders provide the better properties of the CNT cathodes.

Study of Surface Treatments on Field Emission Properties for Triode-Type Carbon Nanotube Cathodes (3극형 탄소나노튜브 캐소드의 전계방출 특성에 미치는 표면처리에 관한 연구)

  • Lee, Ji-Eon;An, Young-Je;Lee, Je-Hyun;Chung, Won-Sub;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • Carbon nanotube cathodes(CNT cathodes) with a trench structure similar to gated structure of triode-type cathode were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatments on CNT cathodes were investigated for high efficiency field emission displays(FEDs). A liquid method easily removed the organic residue and protruded the CNTs. Field emission properties were measured by using a diode-type mode. The liquid method produced a turn-on field of $1.4V/{\mu}m$. The emission current density was measured about $3.1mA/cm^{2}$ at the electric field of $3V/{\mu}m$. The liquid method showed a high potential applicable to the surface treatment for triode-type FEDs.

Effect of Surface Morphology and Adhesion Force on the Field Emisson Properties of Carbon Nanotube Based Cathode (탄소나노튜브 캐소드의 전계방출 특성에 대한 표면 형상과 부착력의 영향)

  • Jung, Hyuk;Cho, You-Suk;Kang, Young-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.277-282
    • /
    • 2008
  • The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.

Fabrication of silicon field emitter array using chemical-mechanical-polishing process (기계-화학적 연마 공정을 이용한 실리콘 전계방출 어레이의 제작)

  • 이진호;송윤호;강승열;이상윤;조경의
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.88-93
    • /
    • 1998
  • The fabrication process and emission characteristics of gated silicon field emitter arrays(FEAs) using chemical-mechanical-polishing (CMP) method are described. Novel fabrication techniques consisting of two-step dry etching with oxidation of silicon and CMP processes were developed for the formation of sharp tips and clear-cut edged gate electrodes, respectively. The gate height and aperture could be easily controlled by varying the polishing time and pressure in the CMP process. We obtained silicon FEAs having self-aligned and clear-cut edged gate electrode opening by eliminating the dishing problem during the CMP process with an oxide mask layer. The tip height of the finally fabricated FEAs was about 1.1 $\mu$m and the end radius of the tips was smaller than 100 $\AA$. The emission current meaured from the fabricated 2809 tips array was about 31 $\mu$A at a gate voltage of 80 V.

  • PDF

Computer Simulation for Development of Micro-Focus X-ray Generator (미소초점엑스선원 개발을 위한 전산모사)

  • Kim, Sung-Soo;Lee, Youn-Seoung;Kim, Do-Yun;Ko, Dong-Seob
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.403-408
    • /
    • 2011
  • To develop the MFX (Micro-Focus X-ray) tube, the trajectories of electrons emitted from the field emission cathode was simulated using SIMION program. Regardless of starting position of the electron in emitter, we found out the fact that there is the optimum extractor voltage Ve, which can focus the electron beam on one place. Extractor voltage Ve varies depending on the source voltage Vs, but the ratio of two voltages (Ve/Vs) is always constant, its value was 99.4%. When the ratio of two voltages (Ve/Vs) was 99.4%, the beam diameter in the cross-over point was $1.2{\mu}m$. Because the focal spot size in MFXG (Micro-Focus X-ray Generator) can not be less than the cross-over diameter within MFX tube, it is important to find out the conditions that can make a smaller beam diameter. Therefore, the above results is considered to be a very important ones in the development of the MFXG.

An Investigation on Gridline Edges in Screen-Printed Crystalline Silicon Solar Cells

  • Kim, Seongtak;Park, Sungeun;Kim, Young Do;Kim, Hyunho;Bae, Soohyun;Park, Hyomin;Lee, Hae-Seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.2-490.2
    • /
    • 2014
  • Since the general solar cells accept sun light at the front side, excluding the electrode area, electrons move from the emitter to the front electrode and start to collect at the grid edge. Thus the edge of gridline can be important for electrical properties of screen-printed silicon solar cells. In this study, the improvement of electrical properties in screen-printed crystalline silicon solar cells by contact treatment of grid edge was investigated. The samples with $60{\Omega}/{\square}$ and $70{\Omega}/{\square}$ emitter were prepared. After front side of samples was deposited by SiNx commercial Ag paste and Al paste were printed at front side and rear side respectively. Each sample was co-fired between $670^{\circ}C$ and $780^{\circ}C$ in the rapid thermal processing (RTP). After the firing process, the cells were dipped in 2.5% hydrofluoric acid (HF) at room temperature for various times under 60 seconds and then rinsed in deionized water. (This is called "contact treatment") After dipping in HF for a certain period, the samples from each firing condition were compared by measurement. Cell performances were measured by Suns-Voc, solar simulator, the transfer length method and a field emission scanning electron microscope. According to HF treatment, once the thin glass layer at the grid edge was etched, the current transport was changed from tunneling via Ag colloids in the glass layer to direct transport via Ag colloids between the Ag bulk and the emitter. Thus, the transfer length as well as the specific contact resistance decreased. For more details a model of the current path was proposed to explain the effect of HF treatment at the edge of the Ag grid. It is expected that HF treatment may help to improve the contact of high sheet-resistance emitter as well as the contact of a high specific contact resistance.

  • PDF

Fabrication of Triode Type Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition (열 화학 기상 증착법을 이용한 삼극관 구조의 탄소 나노 튜브 전계 방출 소자의 제조)

  • Yu W. J.;Cho Y. S.;Choi G. S.;Kim D. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.542-546
    • /
    • 2004
  • We report a new fabrication process for high performance triode type CNT field emitters and their superior electrical properties. The CNT-based triode-type field emitter structure was fabricated by the conventional semiconductor processes. The keys of the fabrication process are spin-on-glass coating and trim-and-leveling of the carbon nanotubes grown in trench structures by employing a chemical mechanical polishing process. They lead to strong adhesion and a uniform distance from the carbon nanotube tips to the electrode. The measured emission property of the arrays showed a remarkably uniform and high current density. The gate leakage current could be remarkably reduced by coating of thin $SiO_{2}$ insulating layer over the gate metal. The field enhancement factor(${\beta}$) and emission area(${\alpha}$) were calculated from the F-N plot. This process can be applicable to fabrication of high power CNT vacuum transistors with good electrical performance.

Enhanced Field Electron Emission from Dielectric Coated Highly Emissive Carbon Fibers

  • Almarsi, Ayman M.;Hagmann, Mark J.;Mousa, Marwan S.
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • This paper describes experiments aimed at characterizing the behavior of field electron emitters fabricated by coating carbon fibers with epoxylite resin. Polyacrylonitrile carbon fibers of type VPR-19, thermally treated at $2,800^{\circ}C$, were used. Each was initially prepared in a "uncoated" state, by standard electro polishing and cleaning techniques, and was then examined in a scanning electron microscope. The fiber was then baked overnight in a field electron microscope (FEM) vacuum chamber. Current-voltage characteristics and FEM images were recorded on the following day or later. The fiber was then removed from the FEM, coated with resin, "cured" by baking, and replaced in the FEM. After another overnight bake, the FEM characterization measurements were repeated. The coated fibers had significantly better performance than uncoated fibers. This confirms the results of earlier experiments, and is thought to be due in part to the formation of a conducting channel in the resin over layer. For the coated fiber, lower voltages were needed to obtain the same emission current. The coated fibers have current-voltage characteristics that show smoother trends, with greater stability and repeatability. No switch-on phenomena were observed. In addition, the emission images on the phosphor-coated FEM screen were more concentrated, and hence brighter.