• Title/Summary/Keyword: Field emitter

Search Result 265, Processing Time 0.028 seconds

Decrease of Gate Leakage Current by Employing AI Sacrificial Layer in the DLC-coated Si-tip FEA Fabrication (DLC-coated Si-tip FEA 제조에 있어서 Al 희생층을 이용한 게이트 누설 전류의 감소)

  • Ju, Byeong-Kwon;Lee, Sangjo;Kim, Hoon;Lee, Yun-Hi;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.577-579
    • /
    • 1999
  • DLC film remaining on device surface could be removed by eliminating AI sacrificial layer as a final step of lift-off process in the fabrication of DLC-coated Si-tip FEA. The field emission properties(I-V curves, hysteresis, and current fluctuation etc.) of the processed device were analyzed and the process was employed to 1.76 inch-sized FEA panel fabrication in order to evaluate its FED applicability.

  • PDF

A Novel Carbon Nanotube FED Structure and UV-Ozone Treatment

  • Chun, Hyun-Tae;Lee, Dong-Gu
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A 10" carbon nanotube field emission display device was fabricated with a novel structure with a hopping electron spacer (HES) by screen printing technique. HES plays a role of preventing the broadening of electron beams emitted from carbon nanotubes without electrical discharge during operation. The structure of the novel tetrode is composed of carbon nanotube emitters on a cathode electrode, a gate electrode, an extracting electrode coated on the top side of a HES, and an anode. HES contains funnel-shaped holes of which the inner surfaces are coated with MgO. Electrons extracted through the gate are collected inside the funnel-shaped holes. They hop along the hole surface to the top extracting electrode. In this study the effects of the addition of HES on emission characteristics of field emission display were investigated. An active ozone treatment for the complete removal of residues of organic binders in the emitter devices was applied to the field emission display panel as a post-treatment.

Design and Fabrication of Compound Semiconductor Solar Cells Grown by MOCVD-Field Aided Heteroface Cell (MOCVD를 이용한 화합물 반도체 Solar Cell의 개발-Field Aided Heteroface 전지)

  • 창기근;엄우용;임성규
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.752-760
    • /
    • 1991
  • The computer aided analysis is performed to investigate the influence of physical parameters (thickness and doping concentration, etc.) in the window, emitter, base on the efficiency characteristics of a uniformly doped hetroface cell. A field aided heteroface cell is newly designed on a basis of optimum data obtained from the theoretical analysis. The field aided heteroface cell fabricated using MOCVD exhibits a total/active area conversion efficiency of EFF. (tot) = 18.9% /EFF. (act.) = 21.4% under the natural incident light of 56.2 mW/cm\ulcorner having a low series resistance of Rs = 0.94 \ulcornercm\ulcornerand a high spectral response of S.R. (ext) > 90% in a range of $7700{\AA}$ < $8500{\AA}$.

  • PDF

Field Emission Characteristics a-C:F:N Film Deposited by Inductively Coupled Plasma Chemical Vapor Deposition

  • Jae, Chung-Suk;Jung, Han-Eun;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.134-139
    • /
    • 1998
  • Amorphous fluorocarbon (a-C:F) is of interest for low dielectric interlayer material, but in this work we applied this material to FED field emitter. N-doped a-C:F films were deposited by inductively coupled plasma chemical vapor deposition (ICPCVD). The Raman spectra were measured to study the film structure and inter-band optical absorption coefficients were measured using Perkin-Elmer UV-VIS-IR spectrophotometer and optical band gap was obtained using Tauc's plot. XPS spectrum and AFM image were investigated to study bond structure and surface morphology. Current-electric field(I-E) characteristic of the film was measured for the characterization of electron emission properties. The optimum doping concentration was found to be [N2]/[CF4]=9% in the gas phase. The turn-on field and the emission current density at $[N_2]/[CF_4]$=9% were found to be 7.34V/$\mu\textrm{m}$ and 16 $\mu\textrm{A}/\textrm{cm}^2$ at 12.8V/$\mu\textrm{m}$, respectively.

  • PDF

Effect of Liquid Surface Treatments on Field Emission Properties of Carbon Nanotube Cathodes

  • Lee, Ji-Eon;An, Young-Je;Shin, Heon-Cheol;Chung, Won-Sub;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.486-489
    • /
    • 2007
  • Carbon nanotube (CNT) cathodes having a trench structure similar to the structure of the gated triodetype cathode were successfully fabricated by a screenprinting method with multi-walled carbon nanotubes. We observed that a liquid method not only readily removes the organic residues on the CNT films, but also satisfactorily protrudes the CNTs out of the electrode surface. The CNT cathodes prepared by the liquid method showed a turned-on field of $1.4\;V/{\mu}m$. The emission current density of them was about $3.1\;mA/cm^2$ at the electric field of $3\; V/{\mu}m$. The liquid method appears to be a promising surface treatment of CNT cathode for gated triode-type FEDs applications.

  • PDF

Design of high speed InAlGaAs/InGaAs HBT structure by Hybrid Monte Carlo Simulation (Hybrid Monte Carlo 시뮬레이션에 의한 고속 InAlGaAs/InGaAs HBT의 구조 설계)

  • 황성범;김용규;송정근;홍창희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.66-74
    • /
    • 1999
  • InAlGaAs/InGaAs HBTs with the various emitter junction gradings(xf=0.0-1.0) and the modified collector structures (collector- I;n-p-n, collector-II;i-p-n) are simulated and analyzed by HMC (Hybrid Monte Carlo) method in order to find an optimum structure for the shortest transit time. A minimum base transit time($ au$b) of 0.21ps was obtainsed for HBT with the grading layer, which is parabolically graded from $x_f$=1.0 and xf=0.5 at the emitter-base interface. The minimum collector transit time($\tau$c) of 0.31ps was found when the collector was modified by inserting p-p-n layers, because p layer makes it possible to relax the electric field in the i-type collector layer, confining the electrons in the $\Gamma$-valley during transporting across the collector. Thus InAlGaAs/InGaAs HBT in combination with the emitter grading($x_f$=0.5) and the modified collector-III showed the transit times of 0.87 psec and the cut-off frequency (f$\tau$) of 183 GHz.

  • PDF

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

Field emission properties of the silicon field emission arrays coated with diamond-like carbon film prepared by filtered cathodic vacuum arc technique (진공아크방전으로 제작된 다이아몬드상 탄소 박막이 코팅된 실리콘 전계 방출 소자의 전계 방출 특성)

  • 황한욱;김용상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.326-331
    • /
    • 2000
  • We have fabricated the field emitter arrays coated with diamond-like carbon (DLC) films that improved the field emission characteristics. The nitrogen doped DLC films are prepared by the filtered cathodic vacuum are (FCVA) tehnique. The activation energy of the nitrogen doped DLC films are derived from electrical conductivity measurements. The silicon field emission arrays (FEAs) were prepared by the VLSI technique. The turn-on field was rapidly decreasing and the emission current was remarkably increasing the DLC-coated FEAs than the non-coated silicon FEAs. In the nitrogen doped FEAs, the turn-on field decreased and the emission current increased with increasing the nitrogen found out the field emission current and the work function of the DLC-coated FEAs was remarkably decreased than that of the non-coated silicon FEAs. As nitrogen doping concentrations are increased the work function of FEAs is decreased and the field emission properties are improved in nitrogen doped DLC-coated FEAs. This phenomenon in due the fact that the Fermi energy level moves to the conduction band by increasing nitrogen doping concentration.

  • PDF