• Title/Summary/Keyword: Field effects

Search Result 7,610, Processing Time 0.029 seconds

Biological Effects of Static Magnetic Fields and ELF-Electromagnetic Field on Microcirculation in Animals

  • Ohkubo, Chiyoji;Okano, Hidyuki;Xu, Shenzhi;Gmitrov, Jraj
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 1999.07a
    • /
    • pp.117-129
    • /
    • 1999
  • Acute effects of locally applied of static magnetic field (SMF) and extremely low frequency electromagnetic field(ELF-EMF) to the cutaneous tissue within a rabbit ear chamber (REC)were evaluated under conscious conditions. Rabbits with the REC were subjected to intravital microscopical investigation by use of microphotoelectric plethysmography(MPPG). There was no dose-response relationship between the extent of vasomotion changes and frequencies(0,20,50, 100Hz)or power levels (1, 5, 10, 25, 50, 100, 200 mT). Under low vascular tone the both fields induce vasodilatation. The effects of SMF (1 mT) on the cutaneous microcirculatory system induced the vasodilatation with enhanced vasomotion under nor-adrenaline-induced high vascular tone as well as the vasoconstriction with reduced vasomotion under acetylcholine-induced low vascular tone. This suggests that the SMF can modulate vascular tone due to the modification of vasomotion biphasically in the cutaneous tissue.

  • PDF

Enhancement of the Magnetic Flux in Metglas/PZT-Magnetoelectric Integrated 2D Geomagnetic Device

  • Huong Giang, D.T.;Duc, P.A.;Ngoc, N.T.;Hien, N.T.;Duc, N.H.
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.308-315
    • /
    • 2012
  • Experimental investigations of the magnetization, magnetostriction and magnetoelectric (ME) effects were performed on sandwich - type Metglas/PZT/Metglas laminate composites. The results have been analyzed by taking into account the demagnetization contribution. The study has pointed out that the magnetic flux concentration is strongly improved in piezomagnetic laminates with a narrower width leading to a significant enhancement of the ME effects. The piezomagnetic laminates with the optimal area dimension were integrated to form a 2-D geomagnetic device, which simultaneously can precisely detect the strength as well as inclination of the earth's magnetic field. In this case, a magnetic field resolution of better than $10^{-4}$ Oe and an angle precision of ${\pm}0.1^{\circ}$ were determined. This simple and low-cost geomagnetic-field device is promising for various applications.

Random Dopant Fluctuation Effects of Tunneling Field-Effect Transistors (TFETs) (터널링 전계효과 트랜지스터의 불순물 분포 변동 효과)

  • Jang, Jung-Shik;Lee, Hyun Kook;Choi, Woo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.179-183
    • /
    • 2012
  • The random dopant fluctuation (RDF) effects of tunneling field-effect transistors (TFETs) have been observed by using atomistic 3-D device simulation. Due to extremely low body doping concentration, the RDF effects of TFETs have not been seriously investigated. However, in this paper, it has been found that the randomly generated and distributed source dopants increase the variation of threshold voltage ($V_{th}$), drain induced current enhancement (DICE) and subthreshold slope (SS) of TFETs. Also, some ways of relieving the RDF effects of TFETs have been presented.

Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads

  • Hjaji, Mohammed A.;Mohareb, Magdi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.787-813
    • /
    • 2014
  • Starting with Hamilton's variational principle, the governing field equations for the steady state response of thin-walled beams under harmonic forces are derived. The formulation captures shear deformation effects due to bending and warping, translational and rotary inertia effects and as well as torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist of four coupled differential equations in the unknown displacement field variables. A general closed form solution is then developed for the coupled system of equations. The solution is subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A super-convergent finite element is then formulated based on the exact shape functions. Key features of the element developed include its ability to (a) isolate the steady state response component of the response to make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding shear locking phenomena, and (e) eliminate the need for time discretization. The results based on the present solution are found to be in excellent agreement with those based on finite element solutions at a small fraction of the computational and modelling cost involved.

Triple Material Surrounding Gate (TMSG) Nanoscale Tunnel FET-Analytical Modeling and Simulation

  • Vanitha, P.;Balamurugan, N.B.;Priya, G. Lakshmi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.585-593
    • /
    • 2015
  • In the nanoscale regime, many multigate devices are explored to reduce their size further and to enhance their performance. In this paper, design of a novel device called, Triple Material Surrounding Gate Tunnel Field effect transistor (TMSGTFET) has been developed and proposed. The advantages of surrounding gate and tunnel FET are combined to form a new structure. The gate material surrounding the device is replaced by three gate materials of different work functions in order to curb the short channel effects. A 2-D analytical modeling of the surface potential, lateral electric field, vertical electric field and drain current of the device is done, and the results are discussed. A step up potential profile is obtained which screens the drain potential, thus reducing the drain control over the channel. This results in appreciable diminishing of short channel effects and hot carrier effects. The proposed model also shows improved ON current. The excellent device characteristics predicted by the model are validated using TCAD simulation, thus ensuring the accuracy of our model.

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.493-509
    • /
    • 2021
  • There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

Effects of the Visual Analog Scale and Knee Function Index on the Muscle Strength and Muscle Endurance of the Knees of Male National Field-Hockey Athletes (국가대표 남자 필드하키 선수들의 무릎의 시각적 상사 척도와 무릎 기능평가가 무릎의 근력 및 근지구력에 미치는 영향)

  • Kim, Hyun-Chul;Park, Ki-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • PURPOSE: This study examined the effects of the Visual Analog Scale (VAS) and knee function index on the knee strength and endurance in the national male field-hockey athletes. METHODS: Twenty-four male field-hockey athletes with a painful knee who trained at the national training center in 2019 were enrolled. The VAS and knee function index questionnaire were used to evaluate the degree of pain and functional state of the knee. The muscle strength and endurance of the knee were measured by Biodex (System 4, USA). The Pearson product moment correlation was performed to examine the effects of the VAS and knee function index the of knee on the strength and endurance. In addition, the VAS and knee function index and muscle strength and muscle endurance were examined to determine the relationship using Simple Linear Regression. The statistical significance level was α=.05. RESULTS: An analysis of the correlation between VAS and knee function index and muscle strength and muscle endurance revealed the VAS and knee function index to be statistically significant (r = .700). In addition, the extensor muscle strength, knee VAS (r = -.457), and knee function index (r = -.414) were also statistically significant. A 1-point increase in the VAS and knee function index was associated with an approximately 9.881 and 1.006 extensor muscle strength. CONCLUSION: The VAS and knee function index of field-hockey athletes are related to the strength of the knee extensors. Therefore, field-hockey athletes should develop a program to strengthen the extensor muscle strength of the knee.

A Study on the Disinfection of Coliform Group in the Effluent of Sewage Plant by High Voltage Electric Field Treatment (고전압 전기장을 이용한 하수처리장 방류수 중의 대장균군 소독에 관한 연구)

  • Lee, Min-Gyu;Chung, Geun-Sik;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.817-826
    • /
    • 2008
  • Using high voltage electric fields induced by high voltage AC (10-12 kV/cm, 20 kHz) and pulsed (20-30 kV/cm, 40 Hz) electric field generator as a semipermanent and environment-friendly disinfecting apparatus, the disinfection effect of coliform group in the effluent of sewage plant was investigated. The effects of electric field strength, treatment time, discharge area of a discharge tube, water quality factors (electric conductivity, pH and SS) on its death rate were examined. The death rate of coliform group was increased with increasing electric field strength and treatment time. For AC and pulsed electric field generator, the critical electric field strength was 6 kV/cm and 2 kV/cm, respectively, and the critical treatment time was 5 min and 2 min, respectively, regardless of electric field strength. Comparing the death rate of coliform group by AC and pulsed electric fields used in this study, its death rate was higher for the latter than the former, but did not increase linearly with increasing electric field strength. The results obtained for the effects of discharge area, electric conductivity, pH and SS on the death rate of coliform group using AC electric field (12 kV/cm, 20 kHz) were as follows: its death rate showed the trend to increase linearly with increasing discharge area; for the effect of electric conductivity, its death rate was increased with increasing electric conductivity, regardless of ionic species, increased with increasing cationic valency, but was similar between the same cationic valency; the pH $5{\sim}9$ used in this study did not affect its death rate; its death rate was decreased with increasing SS concentration.

Effects of Static Magnetic Fields on Early Seed Germination and Radish Sprouts Growth (정적 자기장이 무순(radish sprouts)의 초기 발아와 성장에 미치는 영향)

  • Lee, Young-Jin;Lim, Ji-Hun;Park, Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.242-247
    • /
    • 2013
  • In order to prepare for weakening of the productivity of agriculture due to serious climate change, the researches on promoting the growth of plant are required. Although the method of using magnetic field for improving the growth of plant was introduced, the effective method of imposing the field on the plant have yet to be studied thoroughly in the literatures. In this paper, we investigated the effects of static magnetic field on the growth and the early seed germination of radish sprouts according to the strength, direction of excitation and the expose time of the magnetic field, and present the effective method of imposing magnetic fields. From the measurements, it was found that the radish sprouts exposed in the field shows a rapid germination of about 3~4 days than those which had no field, and in order to the effective growth, the strength of the magnetic field should be properly selected, and the excitation direction of magnetic field has little effect on the radish sprouts growth.

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.