• Title/Summary/Keyword: Field effect

Search Result 12,312, Processing Time 0.042 seconds

Effects of Secondary Air Injection in Combustion Field of Model Gas Turbine Combustor (모형 가스터빈 연소기에서 2차공기 주입이 연소장에 미치는 영향)

  • 김규성;임경달;이동형
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.171-176
    • /
    • 2000
  • This purpose of this study is to investigate the combustion emission characteristics on the effect of secondary air injection in combustion field of model gas turbine combustor changing excess air ratio. For this purpose, meantemperature, CO, CO2, O2 and HC concentration were measured by changing excess air ratio and secondary air injection. As a result of this study, meantemperature, CO2 emission was decreased and CO emission increased by increasing the excess air ratio of secondary air. therefore, This paper showed the effect of Secondary air injection on flame structure, combustion emission characteristics.

  • PDF

Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire (물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Park, Hyun-Tae;Bang, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1703-1708
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$ Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $120^{\circ}$, and $180^{\circ}$). The grobal mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhaced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

  • PDF

Management of Tomato Root-knot Nematode Meloidogyne incognita by Plant Extracts and Essential Oils

  • Abo-Elyousr, Kamal A.M.;Awad, Magd El-Morsi;Gaid, M.A. Abdel
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.189-192
    • /
    • 2009
  • The effect of plant extracts of eucalyptus (Eucalyptus chamadulonsis), garlic (Allium sativium), marigold (Tagetes erecta) and neem (Azadirachta indica) and essential oils were tested on the suppression of root-knot nematode Meloidogyne incognita under greenhouse and field conditions. In vitro study, all tested treatments had nematicidal effect on nematode juveniles after 24 and 48 hours from exposures. The highest percentage of nematode mortality was achieved by application of neem extract (65.4%), essential oils (64.4%) and marigold extract (60.5%), followed by garlic and eucalyptus extracts (38.7-39.5%). Under greenhouse and field conditions, neem extract and essential oils treatments were more effective in reducing population numbers of the M. incognita in soil and root gall index compared to other treatments. In field experiments, the maximum protection of tomato plant against root-knot nematode was obtained by application of neem and essential oil treatments, 44.2 and 32.6%, respectively.

Effect of local field on atomic systems II : Derivation of macroscopic quantum Langevin equations in two-level systems (국소장이 원자계에 미치는 영향에 대한 이론 II: 이준위 원자계에서의 거시 양자 Langevin 방정식의 유도)

  • 안성혁
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.103-106
    • /
    • 2003
  • The microscopic quantum Langevin equations for two-level atom electric dipole systems are derived. starting from the microscopic interaction Hamiltonian of the systems. By averaging those microscopic equations over a macroscopic region, the macroscopic quantum Langevin equations are derived and the effect of local-field corrections on the two-level systems is investigated.

Wobble and Nonconcentricity Effects in Eddy Current Test of Tubes or Rods (튜브, 봉류의 와전류 탐상시 시편 변위에 의한 신호 변화)

  • Kim, Y.J.;Kim, Y.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.2
    • /
    • pp.37-41
    • /
    • 1989
  • The purpose of this paper is to estimate the effect of wobble and nonconcentricity of tubes or rods in eddy current test with encircling test coils. Because the eddy current induced in a sample is related to the total magnetic flux linkages, the information about magnetic field distribution in a coil is important. In theoretical study, magnetic field distribution in a single turn coil was calculated and variation of impedance according to the difference of sample positions was presumed. Magnetic field intensity at inside of a solenoidal coil was measured and compared with the theoretical estimation. In experiment, impedance loci of a coil encircling an aluminum rod were measured at different sample positions. The effect of crack positions was examined at same sample positons.

  • PDF

Design for Pressurizing System about Vestibule by Stack Effect & Engineering Analysis - Focused on Case Study - (굴뚝효과와 공학적분석에 의한 부속실 가압시스템 설계 - 사례를 중심으로 -)

  • Kim, Yong-Kwang
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.145-153
    • /
    • 2009
  • We are generally applicate smoke control only vestibule about special escape staircase, it is one of some smoke control model of NFSC 501A. But there are some point at issue in this system. The smoke control system on supervision field of writer is smoke control only vestibule same as the other resemble field. Writer studied in the concrete to find a solution at this issue, and derived a conclusion the most reasonable system on the field is "same time smoke control for staircase and vestibule" by the engineering analysis considering stack effect.

The effect of the curvature of pipe on the thermal-flow field (곡관의 곡률이 열유동장에 미치는 영향)

  • Kim, Sung-Joon;Hyun, Sung-Ho;Hong, Jin-Gi;Min, In-Hong
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.261-268
    • /
    • 1999
  • It is a main object to find out the effect of curvature of pipe on the thermal flow field in copper pipe. the toroidal coordinate system is chosen for this project. 3-D numerical works are done by a commercial code, PHOENICS. The flow and temperature field are simulated and analysed on the view point of variation of pressure and temperature with Dean number. The results show that the strong recirculation phenomena and secondary flow are established and then a lot of pressure drop along main flow direction occurs at the curved portion of pipe and the temperature variation has a reversed trend of pressure variation along the axis of pipe.

  • PDF

Enhanced Performance in Isoindigo Based Organic Small Molecules Field Effect Transistors Using Solvent Additives

  • Park, Yu-Jeong;Jo, Sin-Uk;Seo, Jeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.392.1-392.1
    • /
    • 2014
  • Isoindigo based small molecules have attracted much attention in the field of optoelectronic devices due to their broad absorbance and high charge carrier mobilitiies. Herein, we investigate the field effect transistor characteristics of a series of isoindigo based donor-acceptor-donor (D-A-D) small molecules containing a variable number of thiophene moieties (named IDT, ID2T, and ID3T) which form pi-bridges between the D and A moieites and a different donor moiety (IDED). In order to improve the carrier mobility, 1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO) as solvent additives were used. The film morphology, crystallinity and optical properties of the materials processed with various concentrations of solvent additives were investigated through atomic force microscopy (AFM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy.

  • PDF

Current Density Equations Representing the Transition between the Injection- and Bulk-limited Currents for Organic Semiconductors

  • Lee, Sang-Gun;Hattori, Reiji
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.143-148
    • /
    • 2009
  • The theoretical current density equations for organic semiconductors was derived according to the internal carrier emission equation based on the diffusion model at the Schottky barrier contact and the mobility equation based on the field dependence model, the so-called "Poole-Frenkel mobility model." The electric field becomes constant because of the absence of a space charge effect in the case of a higher injection barrier height and a lower sample thickness, but there is distribution in the electric field because of the space charge effect in the case of a lower injection barrier height and a higher sample thickness. The transition between the injection- and bulk-limited currents was presented according to the Schottky barrier height and the sample thickness change.

The Degradations of Effective Mobility in Surface Channel MOS Devices (표면 채널 모스 소자에서 유효 이동도의 열화)

  • 이용재;배지칠
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.51-54
    • /
    • 1996
  • This paper reports the studies of the inversion layer mobility in p-channel Si MOSFET's under hot-carrier degradated condition. The validity of relationship of hot carrier degradations between the surface effective mobility and field effect mobility and are examined. The effective mobility(${\mu}$$\_$eff/) is derived from the channel conductances, while the field-effect mobility(${\mu}$$\_$FE/) is obtained from the transconductance. The characteristics of mobility curves can be divided into the 3 parts of curves. It was reported that the mobility degradation is due to phonon scattering, coulombic scattering and surface roughness. We are measured the mobility slope in curves with DC-stress [V$\_$g/=-3.1v]. It was found that the mobility(${\mu}$$\_$eff/ and ${\mu}$$\_$FE/) of p-MOSFET's was increased by increasing stress time and decreasing channel length. Because of the increasing stress time and increasing V$\_$g/ is changed oxide reliability and increased vertical field.

  • PDF