• Title/Summary/Keyword: Field effect

Search Result 12,296, Processing Time 0.04 seconds

Effect of Sound Field on the Forced Convection Heat Transfer from an Isothermal Cylinder (음장이 등온원통으로부터의 강제대류 열전달에 미치는 영향)

  • 권영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.373-380
    • /
    • 1988
  • The effect of sound on the heat transfer from an isothermal cylinder in cross flow is investigated by numerical analysis. The modeling is made for the laminar incompressible flow fluctuating in the range of the Reynolds number, 5.leq.Re.leq.35, by the sinusoidal acoustic field. The instantaneous response of the flow and heat transfer is simulated for various frequencies. It is shown that the heat transfer amplitude decreases and the phase lags behind the flow velocity with increase in the frequency. The time-mean effects of the acoustic field on the flow field and heat transfer, known as the acoustic and thermoacoustic streaming, are analyzed. The time-mean heat transfer coefficients are decreased around the forward stagnation point but increased in the wake region. Such a local difference in heat transfer coefficients is a function of the frequency and becomes greatest at some frequency. However, with balance between the local increase and decrease, the overall heat transfer coefficient is almost unaffected by sound.

Short Channel Analytical Model for High Electron Mobility Transistor to Obtain Higher Cut-Off Frequency Maintaining the Reliability of the Device

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.120-131
    • /
    • 2007
  • A comprehensive short channel analytical model has been proposed for High Electron Mobility Transistor (HEMT) to obtain higher cut-off frequency maintaining the reliability of the device. The model has been proposed to consider generalized doping variation in the directions perpendicular to and along the channel. The effect of field plates and different gate-insulator geometry (T-gate, etc) have been considered by dividing the area between gate and the high band gap semiconductor into different regions along the channel having different insulator and metal combinations of different thicknesses and work function with the possibility that metal is in direct contact with the high band gap semiconductor. The variation obtained by gate-insulator geometry and field plates in the field and channel potential can be produced by varying doping concentration, metal work-function and gate-stack structures along the channel. The results so obtained for normal device structure have been compared with previous proposed model and numerical method (finite difference method) to prove the validity of the model.

Effect of Field Orientation on Magnetization Loss in a Stacked Bi-2223 Conductor (자장방향이 적층 Bi-2223도체의 자화손실에 미치는 영향)

  • 류경우;김현준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-82
    • /
    • 2003
  • The ac loss is an important issue in the design of high-Tc superconducting power devices such as transformers and cables. In these devices many Bi-2223 tapes are closely stacked together and exposed to alternating magnetic fields that can have different orientations with respect to a tape. In such arrangement the magnetization loss is influenced by the screening current induced in adjacent tapes and thus different from that in a single tape. This stacking effect was experimentally investigated by measuring the magnetization loss in a stack, which consists of a number of tapes. First the magnetization loss in the single tape was measured in order to confirm the reliability of the loss data measured in the stack. The results for the single tape coincide well will the loss characteristics described in other previous works. For the stack In parallel and longitudinal magnetic fields the measured loss is Independent of both the number of tapes and stacking type. The longitudinal magnetization loss Is well explained rather by the slab model for decoupled filaments. For the tall stack in perpendicular field the measured loss at low fields is greatly decreased, compared to the loss of the single tape. However the loss at high fields is unaffected. These loss behaviors in the tall stack are well described by the slab model for full coupling.

Effects of vertical component of near-field ground motions on seismic responses of asymmetric structures supported on TCFP bearings

  • Mehr, Nasim Partovi;Khoshnoudian, Faramarz;Tajammolian, Hamed
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.641-656
    • /
    • 2017
  • The effects of vertical component of earthquakes on torsional amplification due to mass eccentricity in seismic responses of base-isolated structures subjected to near-field ground motions are studied in this paper. 3-, 6- and 9-story superstructures and aspect ratios of 1, 2 and 3 have been modeled as steel special moment frames mounted on Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios. Three-dimensional linear superstructures resting on nonlinear isolators are subjected to both 2 and 3 component near-field ground motions. Effects of mass eccentricity and vertical component of 25 near-field earthquakes on the seismic responses including maximum isolator displacement and base shear as well as peak superstructure acceleration are studied. The results indicate that the effect of vertical component on the responses of asymmetric structures, especially on the base shear is significant. Therefore, it can be claimed that in the absence of the vertical component, mass eccentricity has a little effect on the base shear increase. Additionally, the impact of this component on acceleration is remarkable so the roof acceleration of a nine-story structure has been increased 1.67 times, compared to the case that the structure is subjected to only horizontal components of earthquakes.

The effect of splay elastic constant on the transmittance of fringe-field switching using a liquid crystal with positive dielectric anisotropy (유전율 이방성이 양인 액정을 사용한 FFS 모드에서의 스플레이 탄성상수에 따른 투과율 연구)

  • Kim, Tae-Hyun;Lee, Ji-Youn;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.518-519
    • /
    • 2005
  • We have studied the transmittance of fringe-filed switching(FFS) using a liquid crystal with positive dielectric anisotropy. Generally, FFS having positive dielectric anisotropy has less transmittance than FFS using negative dielectric anisotropy. FFS mode transmittance depends on horizontal director deformation, however fringe filed is composed of vertical and horizontal field. Vertical field in the middle of electrode suppresses the transmittance of FFS mode, especially when we use positive one. So, it is important to prevent the LC director from the effect of vertical field. We changed the splay elastic constant and checked the transmittance. The transmittance of FFS having positive dielectric anisotropy was improved. Less tilted LC directors improve the transmittance of FFS using positive dielectric anisotropy. We can improve the transmittance by using LC which have high splay elastic constant when another LC properties are equal.

  • PDF

A FEM Analysis of Remote Field Eddy Current Distribution Characteristics to CANDU Fuel Channel Tube(I) (CANDU형 핵연료 채널 압력관에 대한 원거리장 와전류의 자제분포 특성해석(I))

  • Huh, Hyung;Chung, Hyun-Kyu;Kim, Kern-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • A FEM model of the remote-field eddy current effect is presented for zirconium-2.5 percent niobium(Zr-2.5%Nb) nuclear reactor pressure tubes to demonstrate the important electromagnetic field phenomena. This model is applied to evaluate the optimal operating frequency and detector position. There are many ambiguous experimental results connected with this technique. Finite element calculations can be used in the interpretation of these experimental results even though the electromagnetic fields measured in the remote-field technique are very small.

Super-giant Magneto-Impedance Effect of a LC-resonator Using a Glass-Coated Amorphous Microwire

  • Lee, Heebok;Kim, Yong-Seok;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.160-164
    • /
    • 2002
  • A new discovery of the super-giant magneto-impedance (SGMI) effect was found out in a LC-resonator consisted of a glass-coated amorphous $CO_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire. The measurement was carried out at high frequency range from 100 MHz up to 1 GHz of an ac-current flowing along the wire and at varying axial dcmagnetic field in its range of $\pm$120 Oe. The wires, about 16${\mu}m$ in diameter, were fabricated by a glass-coated melt spinning technique. The shape of the impedance curves plotted vs. a dc-field is changing dramatically with the frequency. The phase angle was also strongly dependent on this field. The external dc-magnetic field changes the circumferential permeability as well as the penetration depth, both in turn change the impedance of the sample. The drastic increments of SGMI at high frequency can be understood in terms of the LC-resonance phenomena. The sudden change of the phase angle, as large as $180^{\circ}$ evidenced the occurrence of the resonance at a given intensity of the external dc-field. The maximum ratio of SGMI reached in the experiment by precise tuning frequency equals 450,000% at the frequency of around 551.9075 MHz.

Reduction Characteristics on Perpendicular Magnetization Loss in Transposed Stacking Conductor of Striated YBCO CC (분할형 YBCO CC들을 전위한 적층도체의 수직 자화손실 저감 특성)

  • Lee, J.K.;Byun, S.B.;Han, B.W.;Park, S.H.;Choi, S.J.;Kim, W.S.;Park, C.;Choi, K.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.15-19
    • /
    • 2009
  • Recently, it is proposed to make striations on the YBCO coated conductor and to transpose each other as one of the solutions to decrease the perpendicular magnetization loss. For large power application using HTS, the stacked conductor packing the YBCO coated conductors should be used because single conductor is limited in flowing of demanded large current. In this paper, we research the affect of the striation and continuously transposed stacking geometry on the magnetization loss in perpendicularly exposed magnetic field. Several short samples having different number of striation and continuously transposed stack are prepared and tested in perpendicularly exposed magnetic field for the magnetization loss characteristics. The magnetization loss of striated sample was lower than sample without striation. The reduction effect on magnetization loss by the striation is obviously appeared in higher field and lower number of stack and decreased as increasing the transposed stacking number. Also, the reduction effect by transposed stack is obviously appeared in lower field at lower number of striation and isn't appeared at higher striation number and higher magnetic field.

Magnetic field characteristics from HTS quadruple magnet of in-flight separator for a heavy ion accelerator

  • Zhang, Zhan;Lee, Sangjin;Jo, Hyun Chul;Kim, Do Gyun;Kim, Jongwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.23-27
    • /
    • 2015
  • Quadruple magnet is an essential component for the accelerator, and the field uniformity in the good field region reflects the quality of quadruple magnet. In this paper, the total magnetic field B was separated into the coil-induced magnetic field $B_s$ and the iron-induced magnetic field $B_c$ to explain why the total magnetic field B has some inhomogeneity. Using Fourier analysis, harmonic components of $B_s$, $B_c$ and B have been analyzed at good field region, respectively. The harmonics of multipole magnet and Fourier analysis are helpful to show the uniformity of magnetic field. Several geometries of yoke and coils were defined to analyze the effect on field uniformity of an HTS quadruple magnet. By the analysis, it was found that the sixth harmonics which is the main factor of field inhomogeneity can be reduced to zero. It means that the sixth harmonics of the magnetic field B can be removed by adjusting the geometry of the magnet pole and the position of coils. We expect that this result can effectively improve the uniformity of an HTS quadruple magnet.

Effect of near and far-field earthquakes on RC bridge with and without damper

  • Soureshjani, Omid Karimzade;Massumi, Ali
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.533-543
    • /
    • 2019
  • This paper presents a study on the behavior of an RC bridge under near-field and far-field ground motions. For this purpose, a dynamic nonlinear finite element time history analysis has been conducted. The near-field and far-field records are chosen pairwise from the same events which are fits to the seismic design of the bridge. In order to perform an accurate seismic evaluation, the model has been analyzed under two vertical and horizontal components of ground motions. Parameters of relative displacement, residual displacement, and maximum plastic strain have been considered and compared in terms of near-field and far-field ground motions. In the following, in order to decrease the undesirable effects of near-field ground motions, a viscous damper is suggested and its effects have been studied. In this case, the results show that the near-field ground motions increase maximum relative and residual displacement respectively up to three and twice times. Significant seismic improvements were achieved by using viscous dampers on the bridge model. Somehow under the considered near-field ground motion, parameters of residual and relative displacement decrease dramatically even less than the model without damper under the far-field record of the same ground motion.