• Title/Summary/Keyword: Field effect

Search Result 12,354, Processing Time 0.051 seconds

Analysis of the mixing effect of the confluence by the difference in water temperature between the main stream and the tributary (본류와 지류의 수온 차에 의한 합류부 혼합 양상 분석)

  • Ahn, Seol Ha;Lee, Chang Hyun;Kim, Kyung Dong;Kim, Dong Su;Ryu, Si Wan;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.103-113
    • /
    • 2023
  • The river confluence is a section in which two rivers with different topographical and hyrodynamic characteristics are combined into one, and it is a section in which rapid flow, inflow of sediments, and hydrological topographic changes occur. In the confluence section, the flow of fluid occurs due to the difference in density due to the type of material or temperature difference, which is called a density flow. It is necessary to accurately measure and observe the confluence section including a certain section of the main stream and tributaries in order to understand the mixing behavior of the water body caused by the density difference. A comprehensive analysis of this water mixture can be obtained by obtaining flow field and flow rate information, but there is a limit to understanding the mixing of water bodies with different physical properties and water quality characteristics of rivers flowing with stratigraphic flow. Therefore, this study attempts to grasp the density flow through the water temperature distribution in the confluence section. Among the extensive data of the river, vertical data and water surface data were acquired, and through this, the stratification phenomenon of the confluence was to be confirmed. It was intended to analyze the mixed pattern of the confluence by analyzing the water mixing pattern according to the water temperature difference using the vertical data obtained by measuring the repair volume by installing the ADCP on the side of the boat and measuring the real-time concentration using YSI. This study can supplement the analysis results of the existing water quality measurement in two dimensions. Based on the comparative analysis, it will be used to investigate the current status of stratified sections in the water layer and identify the mixing characteristics of the downstream section of the river.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Application of unmanned helicopter on pest management in rice cultivation (무인 항공기 이용 벼 병해충 방제기술 연구)

  • Park, K.H.;Kim, J.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.43-58
    • /
    • 2008
  • This research was conducted to determine the alternative tool of chemical spray for rice cultivation using the unmanned helicopter(Yamaha, R-Max Type 2G-remote controlled system) at farmer's field in Korea. The unmanned helicopter tested was introduced form Japan. In Korea the application of chemicals by machine sprayer for pest management in rice cultivation has been ordinarily used at the farmer's level. However, it involved a relatively high cost and laborious for the small scale of cultivation per farm household. Farm population has been highly decreased to 7.5% in 2002 and the population is expected to rapidly reduce by 3.5% in 2012. In Japan, pest control depending on unmanned helicopter has been increased by leaps and bounds. This was due in part to the materialization of the low-cost production technology under agricultural policy and demand environmentally friendly farm products. The practicability of the unmanned helicopter in terms of super efficiency and effectiveness has been proven, and the farmers have understood that the unmanned helicopter is indispensable in the future farming system that they visualized. Also, the unmanned helicopter has been applied to rice, wheat, soybean, vegetables, fruit trees, pine trees for spraying chemicals and/or fertilizers in Japan Effect of disease control by unmanned helicopter was partially approved against rice blast and sheath blight. However, the result was not satisfactory due to the weather conditions and cultural practices. The spray density was also determined in this experiment at 0, 15, 30, and 60cm height from the paddy soil surface and there was 968 spots at 0cm, 1,560 spots at 15cm, 1,923 spots at 30cm, and 2,999 spots at 60cm height. However, no significant difference was found among the treatments. At the same time, there was no phytotoxicity observed under the chemical stray using this unmanned helicopter, nor the rice plant itself was damaged by the wind during the operation.

Research on the Digital Twin Policy for the Utilization of Administrative Services (행정서비스 활용을 위한 디지털 트윈 정책 연구)

  • Jina Ok;Soonduck Yoo;Hyojin Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • The purpose of this study is to research digital twin policies for the use of administrative services. The study was conducted through a mobile survey of 1,000 participants, and the results are as follows. First, in order to utilize digital twin technology, it is necessary to first identify appropriate services that can be applied from the perspective of Gyeonggi Province. Efforts to identify digital twin services that are suitable for Gyeonggi Province's field work should be prioritized, and this should lead to increased efficiency in the work. Second, Gyeonggi Province's digital twin administrative services should prevent duplication with central government projects and establish a model that can be connected and utilized. It should be driven around current issues in Gyeonggi Province and the demands of citizens for administrative services. Third, to develop Gyeonggi Province's digital twin administrative services, a standard model development plan through participation in pilot projects should be considered. Gyeonggi Province should lead the project as the main agency and promote it through a collaborative project agreement. It is suggested that a support system for the overall project be established through the Gyeonggi Province Digital Twin Advisory Committee. Fourth, relevant regulations and systems for the construction, operation, and management of dedicated departments and administrative services should be established. To achieve the realization of digital twins in Gyeonggi Province, a dedicated organization that can perform various roles in project promotion and operation, as well as legal and institutional improvements, is necessary. To designate a dedicated organization, it is necessary to consider expanding and reorganizing existing departments and evaluating the operation of newly established departments. The limitation of this study is that it only surveyed participants from Gyeonggi Province, and it is recommended that future research be conducted nationwide. The expected effect of this study is that it can serve as a foundational resource for applying digital twin services to public work.

A Study on Strategic Utilization of Smart Factory: Effects of Building Purposes and Contents on Continuous Utilization (스마트 팩토리의 전략적 활용 연구: 구축 목적 및 내용이 지속적 활용에 미치는 영향)

  • Oh, Ju-Hwan;Kim, Ji-Dae
    • Korean small business review
    • /
    • v.41 no.4
    • /
    • pp.1-36
    • /
    • 2019
  • The purpose of this study is to identify the relationships among purposes and contents of smart factory building and continuous utilization of smart factory. Specifically, this study identifies two types of purposes of smart factory building as follows: (1) improving productivity, (2) increasing flexibility. In this study, three aspects of smart factory building contents were suggested like this: (1) automation area (facility automation vs. work automation), (2) big data system focus (radical transformation vs. incremental improvement), and (3) value chain integration area (internal value chain integration vs. external value chain integration). In addition, we looked at how firm size moderates the purposes - contents - continuous utilization of smart factory relationship. A questionnaire survey was conducted on 151 manufacturing companies. More specifically, out of 151 companies, 100 are small-and-medium-sized enterprises and 51 large-sized enterprises. All questionnaires were targeted at companies with Smart Factory level above level 2. The analysis results of this study using Smart PLS statistical programs are as follows. First, the purposes of smart factory building including increasing productivity and flexibility had positive impacts on all of the contents of smart factory building. Second, all of smart factory building contents had positive impacts on the continuous use of smart factory except big data system for incremental improvement of manufacturing process. Third, the impacts of smart factory building purposes implementation on smart factory building contents varied depending on whether the purpose is productivity improvement or flexibility. Fourth, it was founded that firm size moderated the relationships of purposes - contents - continuous utilization of smart factory in such a way that large-sized firms tend to empathize the link between flexibility and smart factory building contents for continuous use of smart factory, while small-and-medium-sized-firms emphasizing the link between productivity and smart factory building contents. Most of the previous studies have focused on presenting current smart factory deployment cases. However, it is believed that this research has made a theoretical contribution in this field in that it established and verified a research model for the smart factory building strategy. Based on the findings from a working-level perspective, corporate practitioners also need to have a different approach to smart factory building, which should be emphasized depending on whether their purpose of building smart factory is to increase productivity or flexibility. In particular, since the results of this study identify the moderating effect of firm size, it is deemed necessary for firms to implement a smart factory building strategy suitable for their firm size.

Image Evaluation for Optimization of Radiological Protection in CBCT during Image-Guided Radiation Therapy (영상유도 방사선 치료 시 CBCT에서 방사선 방호최적화를 위한 영상평가)

  • Min-Ho Choi;Kyung-Wan Kim;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • With the development of medical technology and radiation treatment equipment, the frequency of high-precision radiation therapy such as intensity modulation radiation therapy has increased. Image-guided radiation therapy has become essential for radiation therapy in precise and complex treatment plans. In particular, with the introduction of imaging equipment for diagnosis in a linear accelerator, CBCT scanning became possible, which made it possible to calibrate and correct the patient's posture through 3D images. Although more precise reproduction of the patient's posture has become possible, the exposure dose delivered to the patient during the image acquisition process cannot be ignored. Radiation optimization is necessary in the field of radiation therapy, and efforts to reduce exposure are necessary. However, when acquiring 3D CBCT images by changing the imaging conditions to reduce exposure, there should be no image quality or artefacts that would make it impossible to align the patient's position. In this study, Rando phantom was used to scan and evaluate images for each shooting condition. The highest SNR was obtained at 100 kV 80 mA 25 ms F1 filter 180°. As the tube voltage and tube current increased, the noise decreased, and the bowtie filter showed the optimal effect at high tube current. Based on the actual scanned images, it was confirmed that patient alignment was possible under all imaging conditions, and that image-guided radiation therapy for patient alignment was possible under the condition of 70 kV 10 mA 20 ms F0 filter 180°, which showed the lowest SNR. In this study, image evaluation was conducted according to the imaging conditions, and low tube voltage, tube current, and small rotation angle scan are expected to be effective in reducing radiation exposure. Based on this, the patient's exposure dose should be kept as low as possible during CBCT imaging.

Effects of Temperature, Light Intensity and Soil Moisture on Growth, Yield and Essential Oil Content in Valerian(Valeriana fauriei var. dasycarpa Hara) (쥐오줌풀의 생육 및 수량과 정유성분에 미치는 온도, 광도, 토양수분의 영향)

  • Cho, Chang-Hwan;Lee, Jong-Chul;Choi, Young-Hyun;Han, Ouk-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.22-32
    • /
    • 1997
  • This experiment was conducted to obtain information for the cultivation of Korean valerian(Valeriana lauriei var. dasycarpa Hara) which will be useful for medicinal and aromatic resources. The effect of different temperature conditions, light intensities and soil water conditions on growth, yield and component of essential oil of V. fauriei were measured at the Dankook University, Cheonan, and a study on the shading treatment was at Umsung, Chungchongbukdo, and Jinbu, Kangwondo, in 1995. V. laudei was planted at five different temperature conditions, 10, 15, 20, 25 and 3$0^{\circ}C$, eight light intensity conditions, 1, 000, 2, 500, 5, 000, 20, 000, 30, 000, 40, 000, 50, 000 and 60, 000lux, six soil water contents, 30, 45, 55, 70, 80 and 90% of the saturated soil, during growth stage. Shading treatment was three conditions, 0, 25 and 50%, during the daytime in field conditions. Photosynthesis had a highly significant relationship with temperature conditions in a quadratic regression model, from which the temperature for the plant growth was estimated to be 17.7$^{\circ}C$. A highly significant quadratic regression was noted between temperature and leaf width or root weight of V. fauriei. It was estimated from the regression equation that the optimum temperature for root growth was 20.3$^{\circ}C$. The content of essential oil and extract rate of root was the highest in the 15~2$0^{\circ}C$. Photosynthesis also was significantly affected by light intensity in a quadratic regression model, from which the optimum light intensity for the growth was estimated to be 40, 000lux. Root yield was more produced in Jinbu than that of in Umsung. The root yield was increased by the shading treatment in Umsung, whereas it was decreased by the shading treatment in Jinbu. The content of essential oil was not affected by the shading treatment of plants during the cultivation, while the compositions of components of essential oil were related to the growing locations. As soil water content was higher, the growth and content of root extract were increased. The optimum soil moisture for the growth of V. fauriei was 80~90% of the saturated soil. In summary, the results indicated that the growth, yield and component of essential oil in V. fauriei were affected by environmental factors as well as soil moisture.

  • PDF

Effects of Change in Patient Position on Radiation Dose to Surrounding Organs During Chest Lateral Radiography with Auto Exposure Control Mode (자동노출제어장치를 적용한 흉부 측면 방사선검사 시 환자 위치 변화가 주변 장기의 선량에 미치는 영향)

  • Seung-Uk Kim;Cheong-Hwan Lim;Young-Cheol Joo;Sin-Young Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.903-909
    • /
    • 2023
  • The purpose of this study is to compare and analyze the effect of changes in the patient's central position on the exposure dose and image quality of surrounding organs during a chest lateral examination using an Auto Exposure Control(AEC). The experiment was conducted on a human body phantom. A needle was attached to the lower part of the center of the coronal plane of the phantom, and a lead ruler was attached to the lower part of the detector so that the 50 cm point was located at the lower center of the AEC ion chamber. The exposure conditions were 125 kVp, 320 mA, the distance between the source and the image receptor was 180 cm, and the exposure field size was 14 × 17 inches. Only one AEC ion chamber was used at the bottom center, and the density was set to '0' and sensitivity to 'Middle', and the central X-ray was incident vertically toward the 6th thoracic vertebra. With AEC mode applied, the 50 cm point of the needle and lead ruler were aligned and the phantom was moved 5 cm toward the stomach (F5) and 5 cm toward the back (B5), and the dose factor was analyzed by measuring ESD. The ESD of the thyroid gland according to the change in patient center position was 232.60±2.20 μGy for Center, 231.22±1.53 μGy for F5, and 184.37±1.19 μGy for B5, and the ESD of the breast was 288.54±3.03 μGy for Center, F5 was 260.97±1.93 μGy, B5 was 229.80±1.62 μGy, and the ESD of the center of the lung was 337.02±3.25 μGy for Center, F5 was 336.09±2.29 μGy, and B5 was 261.76±1.68 μGy. As a result of comparing the average values of dose factors between each group, the difference in average values was statistically significant (p<0.01), and each group appeared to be independent. As a result of the study, there was no significant difference in the dose to the thyroid, breast, and center of the lung according to the change in the patient's central position, except for the breast (10%) when the patient moved forward about 5 cm. However, movement of about 5 cm posteriorly resulted in an average dose reduction of 23.7%. Additionally, when the patient's central position was moved to the rear, image quality deteriorated.

Effect of Fractionated X-ray Irradiation on Sprouted Barley Growth and Chlorophyll Concentration (X선의 분할조사가 새싹보리 생장과 클로로필 농도에 미치는 영향)

  • In Suck Park;Won-Jeong Lee;Sang-Bok Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1171-1178
    • /
    • 2023
  • In study, we investigated changes on growth and chlorophyll concentration on sprouted barley by fractionated X-ray irradiation (FXI). Group was divided into the control group (CG), 1-time irradiation group (30 Gy once), 2-time irradiation group (15 Gy 2 times), and 3-time irradiation group (10 Gy 3 times), and 20 grains were used per group. Experimental group (EG) was exposed by using linear accelerator (Clinac IS, VERIAN, USA), by 6 MV X-ray, SSD 100 cm, 18×10 cm2, 600 MU/min. Length was measured every day until 9th day, and chlorophyl was analyzed using spectrophotometer(uv-1800, shimadzu, japan) in 9th day. Data analysis was performed the One-way ANOVA using SPSS ver 26.0(Chicago, IL, USA). In the pre-germination irradiation group (Pre-GIG), the CG had greater length than the EG on all measurement days, and as the number of FXI increased, the length became shorter. In the post-germination irradiation group (Post-GIG), the length of the CG was statistically significantly greater than that of the EG on all measurement days, and as the number of FXI increased, the length also became longer. The chlorophyll concentration was higher in the Post-GIG than in the Pre-GIG, and chlorophyll concentrations of EG was higher in the Pre-GIG than in the CG, as well as and Post-GIG. In addition, the smaller the number of FXI, the higher the chlorophyll concentration in both groups. FXI was found to affect the growth and chlorophyll concentration of sprouted barley.

Accuracy of HF radar-derived surface current data in the coastal waters off the Keum River estuary (금강하구 연안역에서 HF radar로 측정한 유속의 정확도)

  • Lee, S.H.;Moon, H.B.;Baek, H.Y.;Kim, C.S.;Son, Y.T.;Kwon, H.K.;Choi, B.J.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.42-55
    • /
    • 2008
  • To evaluate the accuracy of currents measured by HF radar in the coastal sea off Keum River estuary, we compared the facing radial vectors of two HF radars, and HF radar-derived currents with in-situ measurement currents. Principal component analysis was used to extract regression line and RMS deviation in the comparison. When two facing radar's radial vectors at the mid-point of baseline are compared, RMS deviation is 4.4 cm/s in winter and 5.4 cm/s in summer. When GDOP(Geometric Dilution of Precision) effect is corrected from the RMS deviations that is analyzed from the comparison between HF radar-derived and current-metermeasured currents, the error of velocity combined by HF radar-derived current is less than 5.1 cm/s in the stations having moderate GDOP values. These two results obtained from different method suggest that the lower limit of HF radar-derived current's accuracy is 5.4 cm/s in our study area. As mentioned in previous researches, RMS deviations become large in the stations located near the islands and increase as a function of mean distance from the radar site due to decrease of signal-to-noise level and the intersect angle of radial vectors. We found that an uncertain error bound of HF radar-derived current can be produced from the separation process of RMS deviations using GDOP value if GDOP value for each component is very close and RMS deviations obtained from current component comparison are also close. When the current measured in the stations having moderate GDOP values is separated into tidal and subtidal current, characteristics of tidal current ellipses analyzed from HF radar-derived current show a good agreement with those from current-meter-measured current, and time variation of subtidal current showed a response reflecting physical process driven by wind and density field.