• 제목/요약/키워드: Field crop classification

검색결과 49건 처리시간 0.023초

Improving Field Crop Classification Accuracy Using GLCM and SVM with UAV-Acquired Images

  • Seung-Hwan Go;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.93-101
    • /
    • 2024
  • Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.

Improved Method of Suitability Classification for Sesame (Sesamum indicum L.) Cultivation in Paddy Field Soils

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.520-529
    • /
    • 2017
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, Korean government pursuits cultivating upland crops in paddy fields to reduce overproduced rice in Korea. In order to succeed this policy, it is critical to set criteria suitability classification for upland crops cultivating in paddy field soils. The objective of this study was developing guideline of suitability classification for sesame cultivation in paddy field soils. Yields of sesame cultivated in paddy field soils and soil properties were investigated at 40 locations at nationwide scale. Soil properties such as topography, soil texture, soil moisture contents, slope, and drainage level were investigated. The guideline of suitability classification for sesame was determined by multi-regression method. As a result, sesame yields had the greatest correlation with topography, soil moisture content, and slope. Since sesame is sensitive to excessive soil moisture content, paddy fields with well drained, slope of 7-15% and mountain foot or hill were best suit for cultivating sesame. Sesame yields were greater with less soil moisture contents. Based on these results, area of best suitable paddy field land for sesame was 161,400 ha, suitable land was 62,600 ha, possible land was 331,600 ha, and low productive land was 1,075,500 ha. Compared to existing suitability classification, the new guideline of classification recommended smaller area of best or suitable areas to cultivate sesame. This result may suggest that sesame cultivation in paddy field can be very susceptible to soil moisture contents.

Crop Field Extraction Method using NDVI and Texture from Landsat TM Images

  • Shibasaki, Ryosuke;Suzaki, Junichi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.159-162
    • /
    • 1998
  • Land cover and land use classification on a huge scale, e.g. national or continental scale, has become more and more important because environmental researches need land cover: And land use data on such scales. We developed a crop field extraction method, which is one of the steps in our land cover classification system for a huge area. Firstly, a crop field model is defined to characterize "crop field" in terms of NDVI value and textual information Textual information is represented by the density of straight lines which are extracted by wavelet transform. Secondly, candidates of NDVI threshold value are determined by "scale-space filtering" method. The most appropriate threshold value among the candidates is determined by evaluating the line density of the area extracted by the threshold value. Finally, the crop field is extracted by applying level slicing to Landsat TM image with the threshold value determined above. The experiment demonstrates that the extracted area by this method coincides very well with the one extracted by visual interpretation.

  • PDF

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

Sentinel-2 위성영상을 이용한 하계 논벼와 동계작물 재배 필지 분류 및 정확도 평가 (Classification of Summer Paddy and Winter Cropping Fields Using Sentinel-2 Images)

  • 홍주표;장성주;박진석;신형진;송인홍
    • 한국농공학회논문집
    • /
    • 제64권1호
    • /
    • pp.51-63
    • /
    • 2022
  • Up-to-date statistics of crop cultivation status is essential for farm land management planning and the advancement in remote sensing technology allows for rapid update of farming information. The objective of this study was to develop a classification model of rice paddy or winter crop fields based on NDWI, NDVI, and HSV indices using Sentinel-2 satellite images. The 18 locations in central Korea were selected as target areas and photographed once for each during summer and winter with a eBee drone to identify ground truth crop cultivation. The NDWI was used to classify summer paddy fields, while the NDVI and HSV were used and compared in identification of winter crop cultivation areas. The summer paddy field classification with the criteria of -0.195

Estimation of Heading Date of Paddy Rice from Slanted View Images Using Deep Learning Classification Model

  • Hyeokjin Bak;Hoyoung Ban;SeongryulChang;Dongwon Gwon;Jae-Kyeong Baek;Jeong-Il Cho;Wan-Gyu Sang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.80-80
    • /
    • 2022
  • Estimation of heading date of paddy rice is laborious and time consuming. Therefore, automatic estimation of heading date of paddy rice is highly essential. In this experiment, deep learning classification models were used to classify two difference categories of rice (vegetative and reproductive stage) based on the panicle initiation of paddy field. Specifically, the dataset includes 444 slanted view images belonging to two categories and was then expanded to include 1,497 images via IMGAUG data augmentation technique. We adopt two transfer learning strategies: (First, used transferring model weights already trained on ImageNet to six classification network models: VGGNet, ResNet, DenseNet, InceptionV3, Xception and MobileNet, Second, fine-tuned some layers of the network according to our dataset). After training the CNN model, we used several evaluation metrics commonly used for classification tasks, including Accuracy, Precision, Recall, and F1-score. In addition, GradCAM was used to generate visual explanations for each image patch. Experimental results showed that the InceptionV3 is the best performing model in terms of the accuracy, average recall, precision, and F1-score. The fine-tuned InceptionV3 model achieved an overall classification accuracy of 0.95 with a high F1-score of 0.95. Our CNN model also represented the change of rice heading date under different date of transplanting. This study demonstrated that image based deep learning model can reliably be used as an automatic monitoring system to detect the heading date of rice crops using CCTV camera.

  • PDF

The evaluation of Spectral Vegetation Indices for Classification of Nutritional Deficiency in Rice Using Machine Learning Method

  • Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.88-88
    • /
    • 2022
  • Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.

  • PDF

고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구 (Field Crop Classification Using Multi-Temporal High-Resolution Satellite Imagery: A Case Study on Garlic/Onion Field)

  • 유희영;이경도;나상일;박찬원;박노욱
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.621-630
    • /
    • 2017
  • 이 논문에서는 고해상도 다중시기 위성영상을 이용한 밭작물 재배지 분류 가능성을 확인하기 위해 마늘과 양파 주산지를 대상으로 분류를 수행하였다. 마늘과 양파의 생육주기에 맞춰 영상을 수집하고 단일시기와 다양한 다중시기 자료의 조합으로 분류를 시도하였다. 단일시기 자료의 경우 파종이 모두 끝난 시기인 12월과 작물이 활발히 자라기 시작하는 3월 영상을 이용하였을 때 높은 분류 정확도를 보였다. 한편, 단일시기 자료 보다는 다중시기 자료를 이용하였을 때 더 높은 분류 정확도를 보였는데 자료의 수가 많은 것이 무조건 높은 분류 정확도를 반영하지는 않았다. 오히려 파종 시기 또는 파종 직후의 영상은 분류 정확도를 떨어뜨리는 역할을 하였고 마늘과 양파의 성장기인 3, 4, 5월 영상을 동시에 이용하여 분류하였을 때 가장 높은 분류 정확도를 얻었다. 따라서, 다중시기 위성영상을 이용하여 마늘과 양파를 분류하기 위해서는 작물 주요 성장기의 영상 확보가 매우 중요하다는 것을 확인할 수 있었다.

무인비행기 (UAV) 영상을 이용한 농작물 분류 (Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV))

  • 박진기;박종화
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.91-97
    • /
    • 2015
  • The Unmanned Aerial Vehicles (UAVs) have several advantages over conventional RS techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude i.e. 80~400 m, they can obtain good quality images even in cloudy weather. Therefore, they are ideal for acquiring spatial data in cases of small agricultural field with mixed crop, abundant in South Korea. This paper discuss the use of low cost UAV based remote sensing for classifying crops. The study area, Gochang is produced by several crops such as red pepper, radish, Chinese cabbage, rubus coreanus, welsh onion, bean in South Korea. This study acquired images using fixed wing UAV on September 23, 2014. An object-based technique is used for classification of crops. The results showed that scale 250, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5 were the optimum parameter values in image segmentation. As a result, the kappa coefficient was 0.82 and the overall accuracy of classification was 85.0 %. The result of the present study validate our attempts for crop classification using high resolution UAV image as well as established the possibility of using such remote sensing techniques widely to resolve the difficulty of remote sensing data acquisition in agricultural sector.

Detection and Classification of Barley Yellow Dwarf Virus Strains Using RT-PCR

  • Paek, Nam-Chon;Woo, Mi-Ok;Kim, Yul-Ho;Kim, Ok-Sun;Nam, Jung-Hyun
    • 한국작물학회지
    • /
    • 제46권1호
    • /
    • pp.53-56
    • /
    • 2001
  • Barley Yellow Dwarf Virus (BYDV), an aphid-borne luteovirus, is a major plant pathogenic disease causing a huge economic loss in the grain production of a wide range of Gramineae species throughout the world. It has been recently reported that BYDV also occurred frequently in wheat field of Korea. Here, we performed to develop the detection and classification methods of BYDV strains that were accomplished by reverse transcription-polymerase chain reaction (RT-PCR). Since there are high variations among BYDV strains, three pairs of primers were designed to detect BYDV strains such as PAV (Vic-PAV and CN-PAV) and MAV (primer A) simultaneously, specifically Vic-PAV(primer B), and MAV (primer C) based on the genomic RNA sequences of BYDV strains previously published. The validity of the primers was confirmed using several BYDV strains obtained from CIMMYT. Though three BYDV strains were able to be detected using primer A, PCR products were not distinguished between two PAV strains. It was possible to separate them with a restriction enzyme, EcoRI, whose restriction site was present in the amplified DNA fragment from Vic-PAV, but not from CN-PAV.

  • PDF