• Title/Summary/Keyword: Field correction

Search Result 743, Processing Time 0.024 seconds

Derivation of Analytic Formulas and Numerical Verification of Weakly Singular Integrals for Near-Field Correction in Surface Integral Equations

  • Rim, Jae-Won;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • An accurate and efficient evaluation for hypersingular integrals (HIs), strongly singular integrals (SSIs), and weakly singular integrals (WSIs) plays an essential role in the numerical solutions of 3D electromagnetic scattering problems. We derive analytic formulas for WSIs based on Stokes' theorem, which can be expressed in elementary functions. Several numerical examples are presented to validate these analytic formulas. Then, to show the feasibility of the proposed formulations for numerical methods, these formulations are used with the existing analytical expressions of HIs and SSIs to correct the near-field interaction in an iterative physical optics (IPO) scheme. Using IPO, the scattering caused by a dihedral reflector is analyzed and compared with the results of the method of moments and measurement data.

Element Correction Method of Thermoluminescent Dosimeters (개인 피폭선량계 소자 보정법)

  • 송명재
    • Progress in Medical Physics
    • /
    • v.2 no.1
    • /
    • pp.17-28
    • /
    • 1991
  • Generally, it is an accurate radiation measurement technique for processors fo thermoluminescent dosimenters(TLDs) to characterize each element they use by producing element correction factors(FCFs). TLDs are classified into three groups such as reference. control, and field TLDs. Reference TLDs are used only for the production of ECFs for the control and field TLDs. They are kept locked in a safe place except when it is necessary to use a subset of them to produce ECFs for the control and field TLDs. The ECF of a given element is a measure of the response of the element relative to the mean response of an arbitrarily selected group of reference elements. As TLDs are used in the field, their relative responses to radiation might be decreased due to muliple readings and physical abuse. Therefore, the producditon of ECFs are performed initially and periodically during the field use. This element correction method provides an excellent tool to examine new TLDs and to monitor the reliability of old TLDs. This paper discuss the 10 step procedures developed to produce and examine ECFs.

  • PDF

T1-Based MR Temperature Monitoring with RF Field Change Correction at 7.0T

  • Kim, Jong-Min;Lee, Chulhyun;Hong, Seong-Dae;Kim, Jeong-Hee;Sun, Kyung;Oh, Chang-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.218-228
    • /
    • 2018
  • Purpose: The objective of this study is to determine the effect of physical changes on MR temperature imaging at 7.0T and to examine proton-resonance-frequency related changes of MR phase images and T1 related changes of MR magnitude images, which are obtained for MR thermometry at various magnetic field strengths. Materials and Methods: An MR-compatible capacitive-coupled radio-frequency hyperthermia system was implemented for heating a phantom and swine muscle tissue, which can be used for both 7.0T and 3.0T MRI. To determine the effect of flip angle correction on T1-based MR thermometry, proton resonance frequency, apparent T1, actual flip angle, and T1 images were obtained. For this purpose, three types of imaging sequences are used, namely, T1-weighted fast field echo with variable flip angle method, dual repetition time method, and variable flip angle method with radio-frequency field nonuniformity correction. Results: Signal-to-noise ratio of the proton resonance frequency shift-based temperature images obtained at 7.0T was five-fold higher than that at 3.0T. The T1 value increases with increasing temperature at both 3.0T and 7.0T. However, temperature measurement using apparent T1-based MR thermometry results in bias and error because B1 varies with temperature. After correcting for the effect of B1 changes, our experimental results confirmed that the calculated T1 increases with increasing temperature both at 3.0T and 7.0T. Conclusion: This study suggests that the temperature-induced flip angle variations need to be considered for accurate temperature measurements in T1-based MR thermometry.

Synthesis of Radar Measurements and Ground Measurements using the Successive Correction Method(SCM) (연속수정법을 이용한 레이더 자료와 지상 강우자료의 합성)

  • Kim, Kyoung-Jun;Choi, Jeong-Ho;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.681-692
    • /
    • 2008
  • This study investigated the application of the successive correction method(SCM), a simple data assimilation method, for synthesizing the radar and rain gauge data. First, the number of iteration and influence radius for the SCM application were decided based on their sensitivity analysis. Also, for the evaluation of synthetic rainfall, the distributed rainfall field using the dense rainfall gauge network was assumed to be the true one. The synthetic rainfall field based on the SCM was also compared quantitatively with the one based on the co-Kriging frequently used nowadays. As the results, the SCM, a simple and economical data assimilation method, was found to secure the accuracy and statistical characteristics of the co-Kriging application.

Study on Shear Layer Correction of Microphone Array Measurement in the Wind Tunnel Test (풍동 조건의 마이크로폰 어레이 측정에서 전단층 보정에 관한 연구)

  • Kim, Wi-Jun;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.92-96
    • /
    • 2007
  • Microphone array beamforming method has been recognized as an important aeroacoustic research field and become a standard technique in localizing sound sources. This method also used in flight acoustic measurement, and especially, it is very useful when measure sounds inside the wind tunnel. In measuring sound which is inside the wind tunnel by traditional beamforming method, there are some errors caused by airstream. The speed and the propagation path of the sound changes as it travel through the airstream. This makes the error which the position of sound is changed a little bit to the down stream direction. In this paper, validation test has made about the correction equation for this wind effects of previous researches. And beamforming including shear layer correction was performed about a sound source in the anechoic open-jet windtunnel.

  • PDF

A Study on the Curvature Correction in Laser Scanner (레이저 주사 장치의 곡률 보정에 관한 연구)

  • Yun, N.I.;Kim, N.;Park, H.K.
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.10a
    • /
    • pp.194-197
    • /
    • 1986
  • In this paper, for the curvature correction on the scanning plane in laser scanning system, aberration correction method using holographic optical element is suggested. Holoens is selected as a type of holographic zone plate which has aberration correction property. And hologram recording condition is analyzed to find fo property. This hololens is implemented by computer-generated hologram technique. Laser scanning system is organized using desinged hololens and scanning properties of this system are investigated. Using this method optical system structure in laser scanning system can be simplified satisfying both scan linearity and field flatness.

  • PDF

Study on Shear Layer Correction of Microphone Array Measurement in the Wind Tunnel Test (풍동 조건의 마이크로폰 어레이 측정에서 전단층 보정에 관한 연구)

  • Kim, Wi-Jun;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.612-618
    • /
    • 2008
  • Microphone array beamforming method has been recognized as an important aeroacoustic research field and become a standard technique in localizing sound sources. This method also used in flight acoustic measurement, and especially, it is very useful when measure sounds inside the wind tunnel. In measuring sound which is inside the wind tunnel by traditional beamforming method, there are some errors caused by airstream. The speed and the propagation path of the sound changes as it travel through the airstream. This makes the error which the position of sound is changed a little bit to the down stream direction. In this paper, validation test has made about the correction equation for this wind effects of previous researches. And beamforming including shear layer correction was performed about a sound source in the anechoic open-jet wind tunnel.

A Study on the stability of boost power factor correction circuit with voltage feedback loop (전압제어루프를 고려한 부스트방식 역률개선회로의 안정도에 관한 연구)

  • Kim, Cherl-Jin;Jang, Jun-Young;Ji, Jae-Geun;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.271-273
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor correction(PFC) has become an increasingly necessary feature in new power supply designs. The power factor correction circuit using boost converter used in input of power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, it is analyzed regulation performance of output voltage and compensator to improve of transient response that presented at continuous conduction mode(CCM) of boost PFC circuit. The validity of designed boost PFC circuit is confirmed by simulation and experimental results.

  • PDF

Optimum Balancing of Rotating Machinery Using Genetic Algorithm (유전 알고리즘을 이용한 회전기계의 최적 평형잡이)

  • 주호진;최원호;양보석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.195-202
    • /
    • 1995
  • This paper presents the calculating method of optimum correction mass within permissible vibration limits for rotating machinery in two-plane field balancing. Basic technique of this method based on influence coefficient method, is graphic vector composition that the resultant of two influence vectors obtained by trial mass have to be equilibrium with initial vibration vector in the each correction plane. Genetic algorithm which is a search algorithm based on the mechanics of natural selection and natural genetics is used for vector composition, and SUMT method is used to objective function which seeks optimum correction mass for balancing a rotor.

  • PDF

Optical Properties Correction of a Heterogeneous Stereoscopic Camera (이종 입체 영상 카메라의 광학 특성 일치화)

  • Jung, Eun Kyung;Baek, Seung-Hae;Park, Soon-Yong;Jang, Ho-Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.74-85
    • /
    • 2012
  • In this paper, we propose a optical property correction technique for a low-cost heterogeneous stereoscopic camera. Three main optical properties of a stereoscopic camera are zoom, focus, and DOF(depth of field). The difference or mis-match of these properties between two stereoscopic videos are the main causes of the visual fatigue to human eyes. The proposed correction technique reduces the difference of the optical properties between the stereoscopic videos and produces high-quality stereoscopic videos. To correct the zoom difference, a LUT(look-up table) is established to match the zoom ratio between the stereoscopic videos. To correct the DOF difference, the magnitude of image edge is measured and the lens iris is changed to control the DOF of the camera. A vertical-type stereoscopic rig is developed for the experiments of the optical property correction. Based on the experimental results, we find that a low-cost heterogeneous stereoscopic camera can be implemented, which can yield low visual fatigue to human eyes.