• Title/Summary/Keyword: Field correction

Search Result 743, Processing Time 0.026 seconds

Realization of DGPS using Mobile Phone and Internet (이동전화와 인터넷을 이용한 DGPS 보정항법 시스템)

  • Ko, Sun-Jun;Won, Jong-Hoon;Park, Hun-Joon;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2359-2361
    • /
    • 2000
  • This paper presents a practical method of realizing Differential GPS(DGPS) using an effective communication link. The DGPS technique is used to correct user's pseudorange measurements with trasmintted correction data from the reference station. An effective communication system is the key element for successful application of the DGPS. In this paper, a practical method for efficient data communication link for DGPS using mobile phone and TCP/IP protocol is presented. Its performance is verified via field test.

  • PDF

AN ANALYTICAL DC MODEL FOR HEMTS (헴트 소자의 해석적 직류 모델)

  • Kim, Yeong-Min
    • ETRI Journal
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 1989
  • Based on the 2-dimensional charge-control simulation[4], a purely analytical model for MODFET's is proposed. In this model, proper treatment of the diffusion effect in the 2-DEG transport due to the gradual channel opening along the 2-DEG channel was made to explain the enhanced mobility and increased thershold voltage. The channel thickness and gate capacitance are experssed as functions of gate vlotage including subthreshold characteristics of the MODFET's analytically. By introducing the finite channel opening and an effective channel-length modulation, the slope of the saturation region of the I-V curves was modeled. The smooth transition of the I-V curves from linear-to-saturation region of the I-V curves was possible using the continuous Troffimenkoff-type of field-dependent mobility. Furthermore, a correction factor f was introduced to account for the finite transtition section forming between the GCA and the saturated section. This factor removes the large discrepanicies in the saturation region fo the I-V curves presicted by existing 1-dimensional models. The fitting parameters chosen in our model were found to be predictable and vary over relatively small range of values.

  • PDF

Influence of the porosities on the free vibration of FGM beams

  • Hadji, L.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.273-287
    • /
    • 2015
  • In this paper, a free vibration analysis of functionally graded beam made of porous material is presented. The material properties are supposed to vary along the thickness direction of the beam according to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

A n-order refined theory for bending and free vibration of functionally graded beams

  • Hadji, Lazreg;Daouadji, T. Hassaine;Tounsi, A.;Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.923-936
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

A refined exponential shear deformation theory for free vibration of FGM beam with porosities

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E. Adda
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.361-372
    • /
    • 2015
  • In this paper, a refined exponential shear deformation theory for free vibration analysis of functionally graded beam with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates

  • Hebali, Habib;Bakora, Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.473-495
    • /
    • 2016
  • This work presents a bending, buckling, and vibration analysis of functionally graded plates by employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.683-689
    • /
    • 2017
  • In this paper, a hyperbolic shear deformation theory is presented for bending analysis of functionally graded beams. This theory used in displacement field in terms of thickness co-ordinate to represent the shear deformation effects and does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the virtual work principle and the physical neutral surface concept. A simply supported functionally graded beam subjected to uniformly distributed loads and sinusoidal loads are consider for detail numerical study. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

A MULTI-DIMENSIONAL MAGNETOHYDRODYNAMIC CODE IN CYLINDRICAL GEOMETRY

  • Ryu, Dong-Su;Yun, Hong-Sik;Choe, Seung-Urn
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.223-243
    • /
    • 1995
  • We describe the implementation of a multi-dimensional numerical code to solve the equations for idea! magnetohydrodynamics (MHD) in cylindrical geometry. It is based on an explicit finite difference scheme on an Eulerian grid, called the Total Variation Diminishing (TVD) scheme, which is a second-order-accurate extension of the Roe-type upwind scheme. Multiple spatial dimensions are treated through a Strang-type operator splitting. Curvature and source terms are included in a way to insure the formal accuracy of the code to be second order. The constraint of a divergence-free magnetic field is enforced exactly by adding a correction, which involves solving a Poisson equation. The Fourier Analysis and Cyclic Reduction (FACR) method is employed to solve it. Results from a set of tests show that the code handles flows in cylindrical geometry successfully and resolves strong shocks within two to four computational cells. The advantages and limitations of the code are discussed.

  • PDF

Analyse of the behavior of functionally graded beams based on neutral surface position

  • Hadji, Lazreg;Bedia, El Abbes Adda
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.703-717
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

The Off-Axis Properties of Solar X-Ray Telescopes: I. Evaluation of the Vignetting Effect

  • Shin, Jun-Ho;Sakurai, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • The solar X-ray telescopes, the Yohkoh SXT and the Hinode XRT, have observed for a couple of decades a variety of coronal structures in the range of wide field-of-view (FOV) covering the full solar disk. It has been emphasized that the optical structure of solar telescopes should be designed with care for improving the uniformity over the full FOV. The vignetting effect is one of the important optical characteristics for describing the performance of a telescope, which reflects the ability of collecting the incoming light at different locations and different photon energies. The correction of this vignetting effect would be an important calibration step that should be performed in advance, especially when the observed images are to be used for photometric purposes. Since the vignetting effect of solar X-ray telescopes shows wavelength dependence, a special care should be taken when, for example, performing the temperature analyses with thin and thick filters for flaring activities observed at the periphery of the full FOV. The results of analysis of pre-launch calibration data for the evaluation of vignetting effect will be introduced in detail.

  • PDF