• Title/Summary/Keyword: Field conditions

Search Result 6,830, Processing Time 0.04 seconds

The Influence of Magnetic Field on Diffusion Flames: Role of Magnetic Field On/Off Frequency and Duty Ratio (자기장 분포가 확산화염의 연소특성에 미치는 영향: 자기장 On/Off 주기와 Duty Ratio의 역할)

  • Lee, Won-Nam;Bae, Seung-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2012
  • The influence of magnetic field on propane and acetylene diffusion flames have been experimentally investigated using an electromagnetic system. Periodically induced magnetic field having various frequencies and duty ratios was established in square wave form. The maximum intensity and gradient of magnetic field were 1.3 T and 0.27 T/mm, respectively. The width of a propane flame was reduced up to 4.5% and the brightness was enhanced up to 25% when the magnetic field was induced. The soot emission from an acetylene flame was ceased when magnetic field was induced. The alteration of flow field, which is due to the paramagnetic characteristics of oxygen molecule, is most likely to be responsible for the change in flame size and brightness. The effect of magnetic field on diffusion flames, which competes with the gravitational effect, was more apparent from a smaller size flame. The magnetic field effect, therefore, could be important under microgravity conditions. Since the time required to alter the flow field must be finite, the magnetic field effect is likely to be less significant for a periodically oscillating magnetic field at a high frequency or having a small duty ratio.

Analysis of Fusarium Wilt Based on Normalized Difference Vegetation Index for Radish Field Images from Unmanned Aerial Vehicle (무인기로 촬영한 무 재배지 영상의 정규식생지수(NDVI)를 활용한 병충해 분석 연구)

  • Im, Su-Hyeon;Hassan, Syed Ibrahim;Minh, Dang Lien;Min, Kyung-Bok;Moon, Hyeonjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1353-1357
    • /
    • 2018
  • This paper compares and analyzes Fusarium wilt of radish by using an unmanned aerial vehicle(UAV) with the NDVI-7 camera. The UAV have taken near-infrared images of the Radish field in Gangwon area, which is affected by Fusarium wilt. Based on those images, we analyzed NDVI(Normalized difference vegetation index) and compared conditions of radish by using the Blue value among Regular Vegetation Index in NDVI. First, the radish field is divided into three fields for radish, soil and vinyl. Each field has separate Blue values that are radish 0.4890, soil 0.2959, vinyl -0.0605 respectively. Second, radish condition levels are divided into four stages which are normal, early, middle, and late stage of Fusarium wilt. The average values of each stage are normal 0.5165(100%), early 0.4565(88%), middle 0.3444(66%), and late 0.1772(34%) respectively. This result shows that this NDVI value is validated by measuring conditions of Radish and soil.

Optimum Locations of Passe Conductor Loops for Magnetic Field Mitigation of Transmission Line using GA (유전 알고리듬을 이용한 송전선로 자계 저감용 도체루프의 최적 위치 선정)

  • Shin Myong-Chul;Kim Jong-Hyung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.234-241
    • /
    • 2005
  • The performance of passive conductor loop (hereinafter 'loop') method which is used to mitigate the magnetic field around overhead power transmission line is dependent on its configuration and installed location, which are affected by installation conditions of the loops such as objective areas and levels of magnetic field mitigation. Thus, because the design problem of loops is difficult and cumbersome by variety of their configuration and complexity of magnetic coupling mechanism, it is need to be formulated as a computer-based optimum problem to determine the most effective and reasonable loop model satisfying the installation conditions. In this paper, the optimum locations of the multi-wired multiple loops including series reactance compensations are searched by using the genetic algorithm (GA) to mitigate effectively the magnetic fields of relatively near points or far points from transmission line at Am height, and the magnetic fields mitigation characteristics of each loop are analyzed in the view of magnitude, direction and phase of cancellation fields by polarized vector concept to identify their adequacy and rationality for the installation objectives.

Monitoring and Analysis of 3kW Grid-Connected PV System for Performance Evaluation

  • So Jung-Hun;Jung Young-Seok;Yu Gwon-Jong;Choi Ju-Yeop;Choi Jae-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.57-62
    • /
    • 2005
  • Grid-connected photovoltaic (PV) systems were installed and monitored at the field demonstration test center (FDTC) in Korea in October 2002. Before long-term field testing of installed PV systems, the performances of PV components were evaluated and compared through short-term performance tests of each of the PV system components such as power conditioning system and PV module under standard test conditions. A data acquisition system has been constructed for measuring and analyzing the performance of PV systems to observe the overall effect of environmental conditions on their operation characteristics. Performances of PV systems have been evaluated and analyzed not only for component perspective (PV array, power conditioning unit) but also for global perspective (system efficiency, capacity factor, electrical power energy) by review of the field test and loss factors of the systems. These results indicate that it is highly imperative to develop an optimum design technology of grid connected PV systems. The objective of this paper is not only to evaluate and analyze the performance of domestic PV systems application through long-term field testing at FDTC but also to develop evaluation, analysis and optimum technology for long-term stability and reliability of grid-connected PV systems in Korea.

Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay

  • Karunawardena, Asiri;Oka, Fusao;Kimoto, Sayuri
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.233-254
    • /
    • 2011
  • The consolidation behavior of Sri Lankan peaty clay is analyzed using an elasto-viscoplastic model. The model can describe the secondary compression behavior as a continuous process and it can also account for the effect of structural degradation on the consolidation analysis. The analysis takes into account all the main features involved in the process of peat consolidation, namely, finite strain, variable permeability, and the secondary compression. The material parameters required for the analysis and the procedures to evaluate them, using both standard laboratory and field tests, are explained. Initially, the model performance is assessed by comparing the predicted and the observed peat consolidation behavior under laboratory conditions. The results indicate that the model is capable of predicting the observed creep settlements and the effect of layer thickness on the settlement analysis of peaty clay. Then, the model is applied to predict the consolidation behavior of peaty clay under different field conditions. In this context, firstly, the one-dimensional field consolidation of peaty clay, brought about by the construction of compacted earth fill, is predicted. Then, the two-dimensional peat foundation response upon embankment loading is simulated. A good agreement is seen in the comparison of the predicted results with the field observations.

Correction Methods and Validation for Environmental Conditions in the Ice Field Trials (빙해역 시운전 해석을 위한 환경조건 보정 방법 및 검증)

  • Kim, Hyun Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.117-127
    • /
    • 2019
  • Vessel's ice speed performances will be verified in ice sea trial but environmental conditions of ice fields are changeable according to the weather condition of ice trial area. Speed performance has to correct in the no wind, wave and current etc. after sea trial. Especially finding ice fields which is exact the same as owner's ice thickness and strength requirements is not easy. Therefore speed correction according to environment condition has to be done after sea trial measurements. Correction methods for ice thickness, ice strength, wave, wind and ship draft, trim, ice drift etc. are checked in ice sea trial based on literature review such as ISO standard, ITTC recommendation, journal papers and proceedings of conferences. Possibility of application for current and ice drift correction in ice field are discussed and measuring schemes and procedures of correction methods are described in this paper. All of correction schemes are calculated for 'Araon' which is ice breaking research vessel with Arctic and Antarctic ice field test results. Analyzed results shows that Araon is satisfied with her official ice speed performance of 3 knots with 10MW power at 1m ice thickness, 570kPa ice flexural strength.

Vibration analysis of boron nitride nanotubes by considering electric field and surface effect

  • Zeighampour, Hamid;Beni, YaghoubTadi
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.607-620
    • /
    • 2021
  • In this paper, the vibrations of boron nitride nanotubes (BNNTs) are investigated by considering the electric field. To consider the size effect at nanoscale dimensions, the surface elasticity theory is exploited. The equations of motion of the BNNTs are obtained by applying Hamilton's principle, and the clamped-guided boundary conditions are also considered. The governing equations and boundary conditions are discretized using the differential quadrature method (DQM), and the natural frequency is obtained by using the eigenvalue problem solution. The results are compared with the molecular dynamic simulation in order to validate the accurate values of the surface effects. In the molecular dynamics (MD) simulation, the potential between boron and nitride atoms is considered as the Tersoff type. The Timoshenko beam model is adopted to model BNNT. The vibrations of two types of zigzag and armchair BNNTs are considered. In the result section, the effects of chirality, surface elasticity modulus, surface residual tension, surface density, electric field, length, and thickness of BNNT on natural frequency are investigated. According to the results, it should be noted that, as an efficient non-classical continuum mechanic approach, the surface elasticity theory can be used in scrutinizing the dynamic behavior of BNNTs.

A Comparative Analysis of Field and Slide Survey on Subjective Image of the Nightscape (야경의 주관적 이미지에 관한 현지평가와 슬라이드평가의 비교분석)

  • Ahn, Hyun Tae;Moon, Ki Hoon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.31-37
    • /
    • 2007
  • Despite of many supportive research to the usefulness of slide evaluation on environment of outdoor lighting, study method of using slides have provoked many discussions of its manifestation of reality of field conditions. This study aims to compare the results of slide survey with that of field survey. Distant view and short range view of nightscape of Seoul were selected. Field measurement of luminance and chromaticity were conducted and questionnaire survey were conducted. Frequency analysis, T-test, factor analysis were conducted. Results shows that distant view and short range view of field survey have better visual atmosphere than slide survey. In addition, slide survey on distant view shows lowest values. Difference between field survey and slide survey on distant view is much bigger than the results of short range view.

A Study on the Current Detector with Non Contact Type (비접촉식 전류 검출 장치에 관한 연구)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.351-356
    • /
    • 2018
  • Commonly, a live-line alarm can be used to measure the electric field strength of a high-voltage system to calculate its current, but it is hard to detect the electric field of shielded cables or concealed structures, such as underground distribution cables. Current sensors can detect the magnetic field in a single core wire, but they cannot determine the magnetic field about a double-core wire because the currents flow in opposite directions. Therefore, it is very difficult to detect certain current problems, such as a fault current in an extension line comprised of a double line. In this paper, to ultimately develop a sensor that can detect the current regardless of line conditions, we used a simulation to determine the concentration of the magnetic field dependent on the distribution of the external magnetic field and the path of each line's core.

IMAGINARY BICYCLIC FUNCTION FIELDS WITH THE REAL CYCLIC SUBFIELD OF CLASS NUMBER ONE

  • Jung, Hwan-Yup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.375-384
    • /
    • 2008
  • Let $k={\mathbb{F}}_q(T)$ and ${\mathbb{A}}={\mathbb{F}}_q[T]$. Fix a prime divisor ${\ell}$ q-1. In this paper, we consider a ${\ell}$-cyclic real function field $k(\sqrt[{\ell}]P)$ as a subfield of the imaginary bicyclic function field K = $k(\sqrt[{\ell}]P,\;(\sqrt[{\ell}]{-Q})$, which is a composite field of $k(\sqrt[{\ell}]P)$ wit a ${\ell}$-cyclic totally imaginary function field $k(\sqrt[{\ell}]{-Q})$ of class number one. und give various conditions for the class number of $k(\sqrt[{\ell}]{P})$ to be one by using invariants of the relatively cyclic unramified extensions $K/F_i$ over ${\ell}$-cyclic totally imaginary function field $F_i=k(\sqrt[{\ell}]{-P^iQ})$ for $1{\leq}i{\leq}{\ell}-1$.