• Title/Summary/Keyword: Field bridge test

Search Result 303, Processing Time 0.022 seconds

Experimental and numerical investigation of track-bridge interaction for a long-span bridge

  • Zhang, Ji;Wu, Dingjun;Li, Qi;Zhang, Yu
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.723-735
    • /
    • 2019
  • Track-bridge interaction (TBI) problem often arises from the adoption of modern continuously welded rails. Rail expansion devices (REDs) are generally required to release the intensive interaction between long-span bridges and tracks. In their necessity evaluations, the key techniques are the numerical models and methods for obtaining TBI responses. This paper thus aims to propose a preferable model and the associated procedure for TBI analysis to facilitate the designs of long-span bridges as well as the track structures. A novel friction-spring model was first developed to represent the longitudinal resistance features of fasteners with or without vertical wheel loadings, based on resistance experiments for three types of rail fasteners. This model was then utilized in the loading-history-based TBI analysis for an urban rail transit dwarf tower cable-stayed bridge installed with a RED at the middle. The finite element model of the long-span bridge for TBI analysis was established and updated by the bridge's measured natural frequencies. The additional rail stresses calculated from the TBI model under train loadings were compared with the measured ones. Overall agreements were observed between the measured and the computed results, showing that the proposed TBI model and analysis procedure can be used in further study.

Evaluation of Dynamic Stability of KHSR Bridges Using Train/Track/Bridge Interaction Analysis Method (차량/궤도/교량 상호작용 해석법을 이용한 한국고속철도 교량의 동적안전성 평가)

  • 김만철;나성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1015-1021
    • /
    • 2001
  • This paper represents the results carried out to determine the dynamic response characteristics of Korea High Speed Rail(KHSR) bridges. The responses of the KHSR bridges subjected to the moving train loading are obtained through the simplified method for the 2-dimensional train/track/bridge interaction analysis in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. The results of the analyses are compared with the field test data to verify the performance of the 2-dimensional train/track/bridge interaction analysis method.

  • PDF

Performance Evaluation of KHSR Bridges Using 2-D Train/Track/Bridge Interaction Analysis Method (2차원 상호작용 해석법을 이용한 한국고속철도 교량의 성능평가)

  • 김만철;심성택;이희연
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.366-373
    • /
    • 2000
  • This paper represents the results carried out to determine the dynamic response characteristics of Korea High Speed Rail(KHSR) bridges. The responses of the KHSR bridges subjected to the moving train loading are obtained through the simplified method for the 2-dimensional train/track/bridge interaction analysis in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. The results of the analyses are compared with the field test data to verify the performance of the 2-dimensional train/track/bridge interaction analysis method.

  • PDF

Dynamic testing of a soil-steel bridge

  • Beben, Damian;Manko, Zbigniew
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.301-314
    • /
    • 2010
  • The paper presents the results and conclusions of dynamic load tests that were conducted on a road bridge over the Mokrzyca river in Wroclaw (Poland) made of galvanized corrugated steel plates (CSP). The critical speed magnitudes, velocity vibration, vibration frequency were determined in the paper. The dynamic analysis is extremely important, because such studies of soil-steel bridges in the range of dynamic loads are relatively seldom conducted. Conclusions drawn from the tests can be most helpful in the assessment of behaviour of this type of corrugated plate bridge with soil. In consideration of application of this type of structure in the case of small-to-medium span bridges, the conclusions from the research will not be yet generalized to all types of such solutions. The detailed reference to all type of such bridge structures would be requiring additional analysis (field tests and calculations) on the other types of soil-steel bridges.

Field Tests and Resonance Behavior Corresponding to the Damping Ratio of a High Speed Railroad Bridge (고속철도 교량의 현장실험 및 감쇠비 개선에 따른 공진 시 동적응답의 분석)

  • Kim, Sungil;Kim, Hyunmin;Park, Donguk
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.305-310
    • /
    • 2013
  • In general, it is difficult to measure dynamic responses of a bridge with stepwise increasing speed of a train during commercial service on a high speed railroad. However, before opening the 2nd stage of the Gyeongbu high speed railroad, there was an opportunity for field tests and measurements of the bridge with stepwise increasing speed(from 170km/ h to 315km/h). The measured responses were compared with the results of a developed bridge/train interaction analysis. Although good agreement was found throughout almost the entire range of speeds, relatively large differences were found in the vicinity of the critical speed at which resonance behavior of the bridge occurs. To investigate the cause of this, reanalyses are performed with re-estimated damping ratios from field tests.

A Study on the Method of Load Distribution for Nonlinear Behaviour in RC-T Bridge (RC-T형교의 비선형거동해석을 위한 하중분배법에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-SunChil;Park, Sung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.129-135
    • /
    • 1998
  • The characteristic of load-distribution is investigated by using nonlinear analysis with a field loading test of existing bridge In this study, nonlinear load-distribution technique for quantitative analysis was adopted. The results were compared with linear solution technique with data from failure test at existing RCT-girder bridge and examine the adequacy of the failure mode. The results of this study showed that the linear solution technique and the proposed nonlinear solution technique agreed well in linear region but did not matched well in nonlinear region because of load-redistribution, and that the effect of load-redistribution was considered to analysis of nonlinear region by linear solution.

  • PDF

A Study on the Load Carrying Capacity of the RC-T Bridge considering depth of crack (RC-T 교량의 균열을 고려한 내하력평가 연구)

  • Shim, Jae-Soo;Kim, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • Recently, many existing bridges has been evaluated for maintenance and protection of collapse. In this study, field measurement according to truck loads tests on the reinforce concrete T beam bridge was carried out. Comparing the results of load test and structural analysis using the moments of inertia of gross section, crack section and effective section, and the moments of inertia of section considering depth of crack, it is conclude that the evaluation of load carrying capacity using the stress modification factor from structural analysis using the moments of inertia of gross section is more rational than using the other moments of inertia of sections.

  • PDF

A Study on the Load Carrying Capacity Assessment Method of the Prestressed Concrete Beam Bridges (연속 프리스트레스트 콘크리트 빔교의 내하력 평가 기법에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.126-134
    • /
    • 1998
  • In this paper, the field test by truck load and the structural analysis were performed on a prestressed concrete beam bridge to investigate the load carrying capacity of the prestressed concrete beam bridges. From the results of the field test and the structural analysis, CAF (composite action factor), TIF(transformed impact factor), and $P_n$(load carrying capacity) of the prestressed concrete beam bridges were studied, and the load carrying capacity assessment of the prestressed concrete beam bridges were carried out using these factors.

  • PDF

An Evaluation of Epoxy Asphalt Mixtures for Long-Span Steel Bridge Deck (장경간 강바닥판 교량용 에폭시 아스팔트 혼합물의 적용성 평가)

  • Baek, Yu Jin;Park, Chang Woo;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.579-586
    • /
    • 2012
  • The main objective of the research is to evaluate the laboratory performances of epoxy asphalt mixtures for long-span steel bridge decks. The aggregate gradations were recommended for field applications. The laboratory performance test results showed that the durability of epoxy asphalt mixtures was more noticeable than that of conventional ones. The structural analysis was conducted using resilient modulus and bond-shear test results. The analysis results revealed that just 9% out of total bond-shear stress was enough for the entire required bond-shear stress in the pavement system. The tensile stresses in the bridge decks were within limits compared to the laboratory test results from the Nanjing Grand Bridge in China. As a result, the laboratory performances of the epoxy asphalt mixtures for long-span steel bridge decks were better than those of conventional asphalt mixtures. However, the laboratory performance tests of epoxy asphalt mixtures for long-span steel bridge decks should be conducted precisely since the strengths of the mixtures are sensitive to the temperatures and curing times.

Evaluation of Concrete Bridge Deck Deterioration Using Ground Penetrating Radar Based on an Extended Common Mid-Point Method (확장형 공통중간점법 기반 지표투과레이더를 이용한 콘크리트 교량 바닥판 열화 상태 평가)

  • Baek, Jong Eun;Lee, Hyun Jong;Oh, Kwang Chin;Eom, Byung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.82-92
    • /
    • 2012
  • This study proposed a new non-destructive evaluation method for concrete bridge deck deterioration using ground penetrating radar (GPR). To calculate dielectric constant of the concrete bridge deck, an extended common mid-point (XCMP) method was developed for a two-layered structure using an air-coupled GPR antenna setup. The deterioration conditions of the concrete bridge deck such as deterioration depth was evaluated based on the dielectric constant and surface-to-average dielectric constant ratio of the concrete bridge deck. A GPR field test was conducted on an old concrete bridge with asphalt concrete surfacing to validate the new evaluation method. The test results showed that the newly proposed method estimated pavement thickness and deterioration depth of the concrete deck in a reasonable level.