• Title/Summary/Keyword: Field Tracer Experiment

Search Result 34, Processing Time 0.022 seconds

Chemical Compositions of Primary PM2.5 Derived from Biomass Burning Emissions

  • Ichikawa, Yujiro;Naito, Suekazu
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.79-95
    • /
    • 2017
  • A number of field studies have provided evidence that biomass burning is one of the major global sources of atmospheric particles. In this study, we have collected $PM_{2.5}$ emitted from biomass burning combusted at open burning and laboratory chamber situations. The open burning experiment was conducted with the cooperation of 9 farmers in Chiba Prefecture, Japan, while the chamber experiment was designed to evaluate the characteristics of chemical components among 14 different plant species. The analyzed categories were $PM_{2.5}$ mass concentration, organic carbon (OC), elemental carbon (EC), ionic components ($Na^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), water-soluble organic carbon (WSOC), water-insoluble inorganic carbon (WIOC), char-EC and soot-EC. OC was the dominant chemical component, accounting for the major fraction of primary $PM_{2.5}$ derived from biomass burning, followed by EC. Ionic components contributed a small portion of $PM_{2.5}$, as well as that of $K^+$. In some cases, $K^+$ is used as biomass burning tracer; however, the observations obtained in this study suggest that $K^+$ may not always be suitable as a tracer for biomass burning emissions. Also, the results of all the samples tested indicate relatively low values of char-EC compared to soot-EC. From our results, careful consideration should be given to the usage of $K^+$ and char-EC as indicators of biomass burning. The calculated ratios of WSOC/OC and WIOC/OC were 55.7% and 44.3% on average for all samples, which showed no large difference between them. The organic materials to OC ratio, which is often used for chemical mass closure model, was roughly estimated by two independent methods, resulting in a factor of 1.7 for biomass burning emissions.

Mixing Analysis of Floating Pollutant Using Lagrangian Particle Tracking Model (Lagrangian 입자추적모형을 이용한 부유성 오염물질의 혼합해석)

  • Seo, Il Won;Park, Inhwan;Kim, Young Do;Han, Eun Jin;Choo, Min Ho;Mun, Hyun Saing
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.383-392
    • /
    • 2013
  • In this research, mixing behavior of the floating pollutant such as oil spill accidents was analyzed by studying the advection-diffusion of GPS floaters at water surface. The LPT (Lagrangian Particle Tracking) model of EFDC (Environmental Fluid Dynamics Computer Code) was used to simulate the motion of the GPS floater tracer. In the field experiment, 35 GPS floaters were injected at the Samun Bridge of Nakdong River. GPS floaters traveled to downstream about 700 m for 90 minutes. The field data by the GPS floater experiments were compared with the simulation in order to calibrate the parameter of LPT model. The turbulent diffusion coefficient of LPT model was determined as $K_H/hu^*$ = 0.17 from the scatter diagram. The arrival time of peak concentration and transverse diffusion from the simulation results were similar with the experiments from the concentration curves. Numerical experiments for anticipation of damage from floating pollutant were conducted in the same reach of the Nakdong River and the results show that the pollutant cloud transported to the left bank where the Hwawon pumping station is located. For this reason, it is suggested that the proper action should be needed to maintain the safety of the water withdrawal at the Hwawon pumping station.

Dispersion characteristics of pollutant by a field tracer experiment in river (하천내 현장실험을 통한 오염물의 확산 특성)

  • Kim, Ki-Chul;Jung, Sung-Hee;Lee, Jung-Lyul;Suh, Kyung-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1971-1973
    • /
    • 2009
  • 본 연구에서는 하천에 유입된 오염물질의 거동 및 확산 특성을 파악하기 위하여 하천에서 추적자를 이용한 현장실험을 실시하였으며, 실험구간은 경상북도 경주시 에 위치한 하천으로 총 길이 2km, 평균폭 25m로 이루어진 대종천이다. 현장실험에서의 추적자 실험결과를 수치모형과 비교하기 위해 2차원 수심적분 모형인 RMA2, RMA4를 이용하였다. 2차원 동수역학적인 모형인 RMA2를 사용하여 흐름장을 모의한 후 계산결과를 2차원 수질모형인 RMA4에 입력하여 농도자료를 모의하였으며 상 하류단의 경계조건은 현장 실험시 실측한 상류단의 유량과 하류단의 수위를 적용하였다. 실측한 자료를 경계조건으로 모형에 적용하여 시간에 따른 농도값을 계산하였으며, 그 계산값을 추적자의 농도 관측값과 비교하였다. 계산결과는 서로 잘 일치하였다.

  • PDF

PIV measurement of the flow field in rectangular tunnel

  • Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho;Chen, Gong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.886-892
    • /
    • 2008
  • The development of fluid mechanics is briefly reviewed and the importance of fluid flows to heat and mass transfer in nature as well as to science and engineering is outlined. This paper presents the experimental results of air flow in the rectangular tunnel which has four different exhaust outlets, each distance of which from the inlet is 0, 30, 60 and 90mm respectively. This experiment is conducted by using the olive oil as the tracer particles and the kinematic viscosity of the air flow is $1.51{\times}10^{-5}\;m^2$/s. The flow is tested at the flow rate of 1.3 $m^3$/h and the velocity of 0.3 m/s. PIV technology can be used to make a good description of the smoke flow characteristics in the tunnel.

Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House (돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발)

  • Kim, Rack-woo;Lee, In-bok;Ha, Tae-hwan;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Min-hyung;Park, Gwan-yong;Kim, Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.

Development of a CFD Model to Study Ventilation Efficiency of Mechanically Ventilated Pig House (강제환기식 돈사의 환기 효율성 분석을 위한 CFD 모델 개발)

  • Seo, Il-Hwan;Lee, In-Bok;Hong, Se-Woon;Hwang, Hyun-Seob;Bitog, Jessie Pascul;Yoo, Jae-In;Kwon, Kyung-Suk;Ha, Tae-Hwan;Kim, Hyeon-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.25-37
    • /
    • 2008
  • When livestock facilities in Korea have been changed larger and denser, rearing conditions have been getting worse and the productivity of animal production have been decreased. Especially in the cold season, the minimized ventilation has generally been operated to save energy cost in Korea resulting in very poor environmental condition and high mortality. While the stability, suitability, and uniformity of the rearing condition are the most important for high productivity, the ventilation configuration is the most important to improve the rearing condition seasonally. But, it is so difficult to analyze the internal air flow and the environmental factors by conducting only field experiment because the weather condition is very unpredictable and unstable as well as the structural specification can not be easily changed by the researchers considering cost and labor. Accordingly, an aerodynamic computer simulation was adopted to this study to overcome the weakness of conducting field experiment and study the aerodynamic itself. It has been supposed that the airflow is the main mechanism of heat, mass, and momentum transfers. To make the simulation model accurately and actually, simplified pig models were also developed. The accuracy of the CFD simulation model was enhanced by 4.4 % of errors compared with the data collected from field experiments. In this paper, using the verified CFD model, the CFD computed internal rearing condition of the mechanically ventilated pig house were analyzed quantitatively as well as qualitatively. Later, this developed model will be computed time-dependently to effectively analyze the seasonal ventilation efficiency more practically and extensively with tracer gas decay theory.

Generalization of Vertical Plume Despersion in the concective Boundary Layer at Long Distances on Mesoscale (중거리에서 대류경계층 연직방향 plume 확산의 일반화)

  • 서석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • In order to genralize the vertical dispersion of plume at long distances on mesoscale over complex terrain dispersion coefficients data have been obtained systematically according to lapsed time after release by using a composite turbulence water tank that simulates convective boundary layer. Dispersion experiments have been carried out for various combined conditions of thermal turbulence intensity mechanical turbulence intensity and plume release height at slightly to moderately unstable conditions. Results of tracer dispersion experiments conducted using water tank camera and image processing system have been converted into atmospheric dispersion data through the application of similarity law. The equation $\sigma$z/Zi=aX/(b+c X2)0.5 where $\sigma$2; vertical dispersion coefficient zi : mixing height X : dimen-sionaless downwind distance was confirmed to be an appropriate and general equation for expressing $\sigma$2 variation with turbulence intensity and plume release height, The value of "a" was found to be principally affected by mechanical turbulence intensity and that of "b" by mechanical turbulence intensity and release height. It was confirmed that the magnitude of "c" varies with release height. Results of water tank experiments on the relationship of $\sigma$2 vs downwind distance x have been compared with actual atmospheric dispersion data such as CONDORS data and Bowne's nomogram Operating conditions of a composite turbulence water tank for simulating the field turbulence situations of CONDORS experiments and Bowne's $\sigma$2(x) nomogram for suburban area have also been investigated in terms of water temperature difference between convection water tank and bottom plate heating tank grid plate stroke mixing water depth length scale and velocity scale. Moreover the effect of mechanical turbulence intensity on vertical dispersion has been discussed in the light of release height and downwind distance. height and downwind distance.

  • PDF

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF

Interpretation of Migration of Radionuclides in a Rock Fracture Using a Particle Tracking Method (입자추적법을 사용한 암반균열에서 핵종이동 해석)

  • Chung Kyun Park;Pil Soo Hahn;Douglas J. Drew
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-188
    • /
    • 1995
  • A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow Held in a rock fracture. The particle tacking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field une modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. $^3$$H_2O$ and $^{131}$ I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation.

  • PDF

Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+ (RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링)

  • Kim, Jun Song;Seo, Il Won;Shin, Jaehyun;Jung, Sung Hyun;Yun, Se Hun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.495-507
    • /
    • 2021
  • With the recent industrial development, accidental pollution in riverine environments has frequently occurred. It is thus necessary to simulate pollutant transport and dispersion using water quality models for predicting pollutant residence times. In this study, we conducted a field experiment in a meandering reach of the Sum River, South Korea, to validate the field applicability and prediction accuracy of RAMS+ (River Analysis and Modeling System+), which is a two-dimensional (2D) stream flow/water quality analysis program. As a result of the simulation, the flow analysis model HDM-2Di and the water quality analysis model CTM-2D-TX accurately simulated the 2D flow characteristics, and transport and mixing behaviors of the pollutant tracer, respectively. In particular, CTM-2D-TX adequately reproduced the elongation of the pollutant cloud, caused by the storage effect associated with local low-velocity zones. Furthermore, the transport model effectively simulated the secondary flow-driven lateral mixing at the meander bend via 2D dispersion coefficients. We calculated the residence time for the critical concentration, and it was elucidated that the calculated residence times are spatially heterogeneous, even in the channel-width direction. The findings of this study suggest that the 2D water quality model could be the accidental pollution analysis tool more efficient and accurate than one-dimensional models, which cannot produce the 2D information such as the 2D residence time distribution.