• Title/Summary/Keyword: Field Programmable Analog Arrays

Search Result 4, Processing Time 0.02 seconds

Field programmable analog arrays for implementation of generalized nth-order operational transconductance amplifier-C elliptic filters

  • Diab, Maha S.;Mahmoud, Soliman A.
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.534-548
    • /
    • 2020
  • This study presents a new architecture for a field programmable analog array (FPAA) for use in low-frequency applications, and a generalized circuit realization method for the implementation of nth-order elliptic filters. The proposed designs of both the FPAA and elliptic filters are based on the operational transconductance amplifier (OTA) used in implementing OTA-C filters for biopotential signal processing. The proposed FPAA architecture has a flexible, expandable structure with direct connections between configurable analog blocks (CABs) that eliminates the use of switches. The generalized elliptic filter circuit realization provides a simplified, direct synthetic method for an OTA-C symmetric balanced structure for even/odd-nth-order low-pass filters (LPFs) and notch filters with minimum number of components, using grounded capacitors. The filters are mapped on the FPAA, and both architectures are validated with simulations in LTspice using 90-nm complementary metal-oxide semiconductor (CMOS) technology. Both proposed FPAA and filters generalized synthetic method achieve simple, flexible, low-power designs for implementation of biopotential signal processing systems.

DEVELOPMENT OF RPS TRIP LOGIC BASED ON PLD TECHNOLOGY

  • Choi, Jong-Gyun;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.697-708
    • /
    • 2012
  • The majority of instrumentation and control (I&C) systems in today's nuclear power plants (NPPs) are based on analog technology. Thus, most existing I&C systems now face obsolescence problems. Existing NPPs have difficulty in repairing and replacing devices and boards during maintenance because manufacturers no longer produce the analog devices and boards used in the implemented I&C systems. Therefore, existing NPPs are replacing the obsolete analog I&C systems with advanced digital systems. New NPPs are also adopting digital I&C systems because the economic efficiencies and usability of the systems are higher than the analog I&C systems. Digital I&C systems are based on two technologies: a microprocessor based system in which software programs manage the required functions and a programmable logic device (PLD) based system in which programmable logic devices, such as field programmable gate arrays, manage the required functions. PLD based systems provide higher levels of performance compared with microprocessor based systems because PLD systems can process the data in parallel while microprocessor based systems process the data sequentially. In this research, a bistable trip logic in a reactor protection system (RPS) was developed using very high speed integrated circuits hardware description language (VHDL), which is a hardware description language used in electronic design to describe the behavior of the digital system. Functional verifications were also performed in order to verify that the bistable trip logic was designed correctly and satisfied the required specifications. For the functional verification, a random testing technique was adopted to generate test inputs for the bistable trip logic.

Conducted-Noise Characteristics of a Digitally-Controlled Randomly-Switched DC-DC Converter with an FPGA-Based Implementation

  • Dousoky, Gamal M.;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.228-234
    • /
    • 2010
  • This paper investigates the conducted-noise characteristics of a digitally-controlled randomly-switched dc-dc converter. In order to investigate the effect of the suggested digital controller on the conducted-noise characteristics of a dc-dc converter, three factors have been studied: the field-programmable gate array (FPGA) clock speed, the randomization ratio percentage, and the effect of using a closed loop feedback controller. A field-programmable gate array is much more flexible than analog control circuits, has a lower cost, and can be used for power supply applications. A novel FPGA-based implementation has been suggested for obtaining the experimental validations and realizing the studied concepts. Furthermore, the experimental results have been discussed and design guidelines have been included.

A Proposed New Method of Direct Chaotic Communication Systems Using Adaptive Threshold and Experimental Implementations on FPAA

  • Kenan Altun;Enis Gunay
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.53-62
    • /
    • 2024
  • Communication systems where chaotic signals are used as carrier signals are called Direct Chaotic Communication (DCC). DCC systems have the disadvantage of low bit-error rate (BER) and signal to noise ratio (SNR) performance. The main reason for this disadvantage is that the DCC receiver circuits are constant in the decision block with the threshold voltage values. In this study, a new receiver circuit has been designed to increase BER / SNR performance in digital based DCC systems. According to this, the noise obtained in the receiver circuits of the communication systems is accepted as the dirac delta function. Then a decision block with two inputs is performed using the dirac delta function and the ramp function is obtained. The numerical and the experimental results of the study reveal that proposed model shows much better performance between %70 and %96.