철강용융아연욕의 상부와 하부의 부유물들을 모으는 방법과 이들을 용융 환원에 의해 회수하는 방안에 관련된 여러 가지 연구 및 특허기술 자료로 발표되고 있으나, 이제까지 현장에 적용된 작업모델을 개발하지 못했다. 본 논문에서는 철강공정 인체유해 작업용 로봇이 영상에 기반한 부유물 인식을 위해 가장 효율적인 인식 알고리즘을 제안하였다.
There have been continuous efforts for automation of joint tracking system. This automation process is mainly used to do in root pass of gas metal arc welding in the field of heavy industry and shipbuilding etc. For automation, it is important using of vision sensor. Welding robot with vision sensor is used for weld seam tracking on welding fabrication. Recently, it is used to on post-weld inspection for weld quality evaluation. For real time seam tracking, it is very important role in vision process technique. Vision process is included in filtering and thinning, segmentation processing, feature extraction and recognition. In this paper, it has shown performance comparison results of seam tracking for real time root pass on gas metal arc welding. It can be concluded better segment splitting method than iterative averaging technique in the performance results of seam tracking.
Active shape model is widely used in the field of image processing especially on arbitrary meaningful shape extraction from single gray level image. Cootes et. al. showed efficient detection of variable shape from image by using covariance and mean shape from learning. There are two stages of learning and testing. Hahn applied enhanced shape alignment method rather than using Cootes's rotation and scale scheme. Hahn did not modified the profile itself. In this paper, the method using directional one dimensional profile is proposed to enhance Cootes's one dimensional profile and the shape alignment algorithm of Hahn is combined. The performance of the proposed method was superior to Cootes's and Hahn's. Average landmark estimation error for each image was 27.72 pixels and 39.46 for Cootes's and 33.73 for Hahn's each.
이 논문에서 크기의 변화에 강인한 인공물 축출 알고리듬을 제안한다. 인공물은 크기 및 카메라 센서의 특성에 따라 영상에 다양한 크기로 나타난다. 이 논문은 이러한 크기 변화에 강인한 인공물 축출 방법을 제안한다. 우선 LoG(Laplacian of Gaussian)를 이용하여 최적의 크기를 찾아낸다. 이를 이용하여 우리는 이웃한 정보를 포함할 수 있는 MAP-MRF(Maximum A Posterior-Markov Random Field) 레이블링(Labeling) 방법을 기반으로 인공물 축출을 위한 비용함수를 제안하였다. 인공물은 서로 근처에 존재하기 때문이다. 여기서 정보 비용함수(Data cost function)는 방향 히스토그램(Orientation histogram)을 이용하여 정의하였고, 스무딩 비용함수(Smoothing cost function)는 ICM(Iterated Conditional Modes)을 이용하여 정의한다. 최종적으로 이 알고리듬을 위성영상에 적용하여 알고리듬의 성능을 증명한다.
This paper introduces the optimal disposition of direction finder using EM(Electro-magnetic) wave propagation analysis which is based on LR(Longley-Rice) propagation model and the characteristics of direction finder, emitter and terrain. Initial model is simulated and modified to minimize propagation error as a result of the field trials. Proposed analysis used line-of-sight analysis and mountain-top extraction algorithm to optimize the disposition in the assigned area and the result can be displayed in the 3D map in order of the percentage coverage for direction finding possibility area.
인간은 문서에서 대표적인 단어를 보는 것만으로 정치나 스포츠 등의 분야를 정확히 인지할 수 있다. 문서전체를 대상으로 하지 않고 부분적인 덱스트에서 출현하는 소수의 단어정보에서 문서의 분야를 정확히 결정하기 위해 분야연상어의 구축은 중요한 연구과제이다. 인간이 미리 분야체계를 정의하고, 각 분야에 해당하는 문서를 인터넷이나 서적을 통해 수집하고, 수집문서의 분야를 정확히 지시하는 분야연상어를 수집하는 방법을 제안한다. 문서의 분야결정 시정을 고려하여 분야연상어의 수준과 안정성랭크에 대하여 논의한다. 학습데이터에서 분야연상어 후보의 각 수준을 자동으로 결정하고, 컴퓨터가 제시하는 분야연상어의 수준, 안정성랭크, 집중률, 빈도정보를 이용하여 단일어로 된 분야연상어를 추출하는 방법을 제안한다.
CNN's technologies that represent emotional detection include primitive CNN algorithms, deployment normalization, and drop-off. We present the methods and data of the three experiments in this paper. The training database and the test database are set up differently. The first experiment is to extract emotions using Batch Normalization, which complemented the shortcomings of distribution. The second experiment is to extract emotions using Dropout, which is used for rapid computation. The third experiment uses CNN using convolution and maxpooling. All three results show a low detection rate, To supplement these problems, We will develop a deep learning algorithm using feature extraction method specialized in image processing field.
UWB(Ultra-WideBand)는 수 GHz 이상 광대역의 매우 짧은 신호를 이용하여 고속의 송수신이 가능한 기술로서, 최근 레이다 분야에 응용되고 있다. IR(Impulse Radio)-UWB 레이다의 경우, 높은 분해능으로 모션 인식 분야에도 적용되고 있다. 따라서, 본 논문에서는 IR-UWB 레이다를 이용한 모션 인식에 관한 연구를 진행하였다. 모션에 대한 데이터를 획득하기 위해 개발 환경을 구축하고, 성능 향상을 위한 신호처리 알고리즘을 구현하였다. 그리고 신호처리 결과를 바탕으로 모션의 특징 추출과 학습을 통해 성능을 검증하였다.
Sleep apnea (SA) is a common chronic sleep disorder that disrupts breathing during sleep. Clinically, the standard for diagnosing SA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of SA diagnoses in public health sectors. Therefore, ECG-based methods for SA detection have been proposed to automate the PSG procedure and reduce its discomfort. We propose a preprocessing method to convert the one-dimensional time series of ECG into two-dimensional images using the Gramian Angular Field (GAF) algorithm, extract temporal features, and use a two-dimensional convolutional neural network for classification. The results of this study demonstrated that the proposed method can perform SA detection with specificity, sensitivity, accuracy, and area under the curve (AUC) of 88.89%, 81.50%, 86.11%, and 0.85, respectively. Our experimental results show that SA is successfully classified by extracting preprocessing transforms with temporal features.
산림지역에서 이산화탄소흡수량 산출을 위해서는 현지산림조사와 영상정보 등의 원격탐사 자료를 이용함으로써 흉고직경이나 수고와 같은 산림 탄소흡수량 추정에 필요한 기본자료를 정량적으로 수집하여 활용한다. 그러나 여전히 현장조사의 비중이 높고 혼효림이 많은 국내 산림 여건상 취득된 산림정보의 정확도가 낮은 실정이다. 따라서 본 연구에서는 LiDAR 자료를 이용하여 경사기반 영역확장법을 적용하여 수목의 수직적 구조를 파악하고 수목 정점추출 알고리즘을 통한 개체목의 수고 및 개체수를 파악하여 이를 현장조사를 통한 자료로부터 도출된 수고-흉고직경 관계식에 대입하여 정량적인 이산화탄소흡수량 산출에 필요한 기본데이터를 산출 할 수 있었다. 또한 총 3종류의 수목에 대한 이산화탄소흡수량을 계산하고 단위면적당 이산화탄소흡수량을 추정할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.