• Title/Summary/Keyword: Field Difference

Search Result 4,714, Processing Time 0.032 seconds

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF

Study on the Technological System of the Cooperative Cultivation of Paddy Rice in Korea (수도집단재배의 기술체계에 관한 연구)

  • Min-Shin Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.129-177
    • /
    • 1970
  • For the purpose of establishing the systematized technical scheme of the cooperative rice cultivation which has most significant impact to improve rice productivity and the farm management, the author have studied the cultivation practices, and the variation of rice growth and yield between the cooperative rice cultivation and the individual rice cultivation at random selected 18 paddy fields. The author also have investigated through comparative method on the cultivation practices, management, organization and operation scheme of the two different rice cultivation methods at 460 paddy fields. The economic feasibility has been ana lysed and added in this report. The results obtained from this study are summarized as follows; 1. In the nursery, the average amount of fertilizer application, especially, phosphate and potassium, and the frequency of chemicals spray for the disease, insect and pest control at the cooperative rice cultivation are significantly higher than those of the individual rice cultivation. 2. The cultivation techniques of the cooperative rice farming after the transplanting can be characterized by a) the earlier transplanting of rice, b) the denser hills per unit area and the lesser number of seedlings per hill, c) the application of larger quantities of fertilizer including nitrogen, phosphate and potassium, d) more divided application of fertilizers, split doses of the nitrogen and potassium, e) the increased frequencies of the chemicals spray for the prevention of disease, insect and pest damages. 3. The rate of lodging in the cooperative rice cultivation was slightly higher than that of the individual rice cultivation, however, the losses of rice yield owing to the occurrence of rice stem borer and grass leaf roller in the cooperative rice cultivation were lower than that of the individual rice cultivation. 4. The culm length, panicle length, straw weight and grain-straw ratio are respectively higher at the cooperative rice cultivation, moreover, the higher variation of the above factors due to different localities of the paddy fields found at the individual rice cultivation. 5. The number of panicles, number of flowers per panicle and the weight of 1, 000 grains, those contributing components to the rice yield were significantly greater in the cooperative rice cultivation, however, not clear difference in the maturing rate was observed. The variation coefficient of the yield component in the cooperative cultivation showed lower than that or the individual rice cultivation. 6. The average yield of brown rice per 10 are in the cooperative rice cultivation obtained 459.0 kilograms while that of the individual rice cultivation brought 374.8 kilograms. The yield of brown rice in the cooperative rice cultivation increased 84.2 kilogram per 10 are over the individual rice cultivation. With lower variation coefficient of the brown rice yield in the cooperative rice cultivation, it can be said that uniformed higher yield could be obtained through the cooperative rice cultivation. 7. Highly significant positive correlations shown between the seeding date and the number of flowers per panicle, the chemical spray and the number of flowers per panicle, the transplanting date and the number of flowers per panicle, phosphate application and yield, potassium application and maturing rate, the split application of fertilizers and yield. Whilst the significant negative correlation was shown between the transplanting date and the maturing rate 8. The results of investigation from 480 paddy fields obtained through comparative method on the following items are identical in general with those obtained at 18 paddy fields: Application of fertilizers, chemical spray for the control of disease, insects and pests both in the nursery and the paddy field, transplanting date, transplanting density, split application of fertilizers and yield n the paddy fields. a) The number of rice varieties used in the cooperative rice cultivation were 13 varieties while the individual rice cultivation used 47 varieties. b) The cooperative rice cultivation has more successfully adopted improved cultivation techniques such as the practice of seed disinfection, adoption of recommended seeding amount, fall ploughing, application of red soil, introduction of power tillers, the rectangular-type transplanting, midsummer drainage and the periodical irrigation. 9. The following results were also obtained from the same investigation and they are: a) In the cooperative rice cultivation, the greater part of the important practices have been carried out through cooperative operation including seed disinfection, ploughing, application of red soil and compost, the control of disease, insects and pests, harvest, threshing and transportation of the products. b) The labor input to the nursery bed and water control in the cooperative rice cultivation was less than that of the individual rice cultivation while the higher rate of labor input was resulted in the red soil and compost application. 10. From the investigation on the organization and operation scheme of the cooperative rice cultivation, the following results were obtained: a) The size of cooperative rice cultivation farm was varied from. 3 ha to 7 ha and 5 ha farm. occupied 55.9 percent of the total farms. And a single cooperative farm was consisted of 10 to 20 plots of paddies. b) The educational back ground of the staff members involved in the cooperative rice cultivation was superior than that of the individual rice cultivation. c) All of the farmers who participated to the questionaires have responded that the cooperative rice cultivation could promise the increased rice yield mainly through the introduction of the improved method of fertilizer application and the effective control of diseases, insects and pests damages. And the majority of farmers were also in the opinion that preparation of the materials and labor input can be timely carried out and the labor requirement for the rice cultivation possibly be saved through the cooperative rice cultivation. d) The farmers who have expressed their wishes to continue and to make further development of the cooperative rice cultivation was 74.5 percent of total farmers participated to the questionaires. 11. From the analysis of economical feasibility on the two different methods of cultivation, the following results were obtained: a) The value of operation cost for the compost, chemical fertilizers, agricultural chemicals and labor input in the cooperative rice cultivation was respectively higher by 335 won, 199 won, 288 won and 303 won over the individual rice cultivation. However, the other production costs showed no distinct differences between the two cultivation methods. b) Although the total value of expenses for the fertilizers, agricultural chemicals, labor input and etc. in the cooperative rice cultivation were approximately doubled to the amount of the individual rice cultivation, the net income, substracted operation costs from the gross income, was obtained 24, 302 won in the cooperative rice cultivation and 20, 168 won was obtained from the individual rice cultivation. Thereby, it can be said that net income from the cooperative rice cultivation increased 4, 134 won over the individual rice cultivation. It was revealed in this study that the cooperative rice cultivation has not only contributed to increment of the farm income through higher yield but also showed as an effective means to introduce highly improved cultivation techniques to the farmers. It may also be concluded, therefore, the cooperative rice cultivation shall continuously renovate the rice production process of the farmers.

  • PDF

Showing Filial Piety: Ancestral Burial Ground on the Inwangsan Mountain at the National Museum of Korea (과시된 효심: 국립중앙박물관 소장 <인왕선영도(仁旺先塋圖)> 연구)

  • Lee, Jaeho
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.96
    • /
    • pp.123-154
    • /
    • 2019
  • Ancestral Burial Ground on the Inwangsan Mountain is a ten-panel folding screen with images and postscripts. Commissioned by Bak Gyeong-bin (dates unknown), this screen was painted by Jo Jung-muk (1820-after 1894) in 1868. The postscripts were written by Hong Seon-ju (dates unknown). The National Museum of Korea restored this painting, which had been housed in the museum on separate sheets, to its original folding screen format. The museum also opened the screen to the public for the first time at the special exhibition Through the Eyes of Joseon Painters: Real Scenery Landscapes of Korea held from July 23 to September 22, 2019. Ancestral Burial Ground on the Inwangsan Mountain depicts real scenery on the western slopes of Inwangsan Mountain spanning present-day Hongje-dong and Hongeun-dong in Seodaemun-gu, Seoul. In the distance, the Bukhansan Mountain ridges are illustrated. The painting also bears place names, including Inwangsan Mountain, Chumohyeon Hill, Hongjewon Inn, Samgaksan Mountain, Daenammun Gate, and Mireukdang Hall. The names and depictions of these places show similarities to those found on late Joseon maps. Jo Jung-muk is thought to have studied the geographical information marked on maps so as to illustrate a broad landscape in this painting. Field trips to the real scenery depicted in the painting have revealed that Jo exaggerated or omitted natural features and blended and arranged them into a row for the purposes of the horizontal picture plane. Jo Jung-muk was a painter proficient at drawing conventional landscapes in the style of the Southern School of Chinese painting. Details in Ancestral Burial Ground on the Inwangsan Mountain reflect the painting style of the School of Four Wangs. Jo also applied a more decorative style to some areas. The nineteenth-century court painters of the Dohwaseo(Royal Bureau of Painting), including Jo, employed such decorative painting styles by drawing houses based on painting manuals, applying dots formed like sprinkled black pepper to depict mounds of earth and illustrating flowers by dotted thick pigment. Moreover, Ancestral Burial Ground on the Inwangsan Mountain shows the individualistic style of Jeong Seon(1676~1759) in the rocks drawn with sweeping brushstrokes in dark ink, the massiveness of the mountain terrain, and the pine trees simply depicted using horizontal brushstrokes. Jo Jung-muk is presumed to have borrowed the authority and styles of Jeong Seon, who was well-known for his real scenery landscapes of Inwangsan Mountain. Nonetheless, the painting lacks an spontaneous sense of space and fails in conveying an impression of actual sites. Additionally, the excessively grand screen does not allow Jo Jung-muk to fully express his own style. In Ancestral Burial Ground on the Inwangsan Mountain, the texts of the postscripts nicely correspond to the images depicted. Their contents can be divided into six parts: (1) the occupant of the tomb and the reason for its relocation; (2) the location and geomancy of the tomb; (3) memorial services held at the tomb and mysterious responses received during the memorial services; (4) cooperation among villagers to manage the tomb; (5) the filial piety of Bak Gyeong-bin, who commissioned the painting and guarded the tomb; and (6) significance of the postscripts. The second part in particular is faithfully depicted in the painting since it can easily be visualized. According to the fifth part revealing the motive for the production of the painting, the commissioner Bak Gyeongbin was satisfied with the painting, stating that "it appears impeccable and is just as if the tomb were newly built." The composition of the natural features in a row as if explaining each one lacks painterly beauty, but it does succeed in providing information on the geomantic topography of the gravesite. A fair number of the existing depictions of gravesites are woodblock prints of family gravesites produced after the eighteenth century. Most of these are included in genealogical records and anthologies. According to sixteenth- and seventeenth-century historical records, hanging scrolls of family gravesites served as objects of worship. Bowing in front of these paintings was considered a substitute ritual when descendants could not physically be present to maintain their parents' or other ancestors' tombs. Han Hyo-won (1468-1534) and Jo Sil-gul (1591-1658) commissioned the production of family burial ground paintings and asked distinguished figures of the time to write a preface for the paintings, thus showing off their filial piety. Such examples are considered precedents for Ancestral Burial Ground on the Inwangsan Mountain. Hermitage of the Recluse Seokjeong in a private collection and Old Villa in Hwagae County at the National Museum of Korea are not paintings of family gravesites. However, they serve as references for seventeenth-century paintings depicting family gravesites in that they are hanging scrolls in the style of the paintings of literary gatherings and they illustrate geomancy. As an object of worship, Ancestral Burial Ground on the Inwangsan Mountain recalls a portrait. As indicated in the postscripts, the painting made Bak Gyeong-bin "feel like hearing his father's cough and seeing his attitudes and behaviors with my eyes." The fable of Xu Xiaosu, who gazed at the portrait of his father day and night, is reflected in this gravesite painting evoking a deceased parent. It is still unclear why Bak Gyeong-bin commissioned Ancestral Burial Ground on the Inwangsan Mountain to be produced as a real scenery landscape in the folding screen format rather than a hanging scroll or woodblock print, the conventional formats for a family gravesite paintings. In the nineteenth century, commoners came to produce numerous folding screens for use during the four rites of coming of age, marriage, burial, and ancestral rituals. However, they did not always use the screens in accordance with the nature of these rites. In the Ancestral Burial Ground on the Inwangsan Mountain, the real scenery landscape appears to have been emphasized more than the image of the gravesite in order to allow the screen to be applied during different rituals or for use to decorate space. The burial mound, which should be the essence of Ancestral Burial Ground on the Inwangsan Mountain, might have been obscured in order to hide its violation of the prohibition on the construction of tombs on the four mountains around the capital. At the western foot of Inwangsan Mountain, which was illustrated in this painting, the construction of tombs was forbidden. In 1832, a tomb discovered illegally built on the forbidden area was immediately dug up and the related people were severely punished. This indicates that the prohibition was effective until the mid-nineteenth century. The postscripts on the Ancestral Burial Ground on the Inwangsan Mountain document in detail Bak Gyeong-bin's efforts to obtain the land as a burial site. The help and connivance of villagers were necessary to use the burial site, probably because constructing tombs within the prohibited area was a burden on the family and villagers. Seokpajeong Pavilion by Yi Han-cheol (1808~1880), currently housed at the Los Angeles County Museum of Art, is another real scenery landscape in the format of a folding screen that is contemporaneous and comparable with Ancestral Burial Ground on the Inwangsan Mountain. In 1861 when Seokpajeong Pavilion was created, both Yi Han-cheol and Jo Jung-muk participated in the production of a portrait of King Cheoljong. Thus, it is highly probable that Jo Jung-muk may have observed the painting process of Yi's Seokpajeong Pavilion. A few years later, when Jo Jungmuk was commissioned to produce Ancestral Burial Ground on the Inwangsan Mountain, his experience with the impressive real scenery landscape of the Seokpajeong Pavilion screen could have been reflected in his work. The difference in the painting style between these two paintings is presumed to be a result of the tastes and purposes of the commissioners. Since Ancestral Burial Ground on the Inwangsan Mountain contains the multilayered structure of a real scenery landscape and family gravesite, it seems to have been perceived in myriad different ways depending on the viewer's level of knowledge, closeness to the commissioner, or viewing time. In the postscripts to the painting, the name and nickname of the tomb occupant as well as the place of his surname are not recorded. He is simply referred to as "Mister Bak." Biographical information about the commissioner Bak Gyeong-bin is also unavailable. However, given that his family did not enter government service, he is thought to have been a person of low standing who could not become a member of the ruling elite despite financial wherewithal. Moreover, it is hard to perceive Hong Seon-ju, who wrote the postscripts, as a member of the nobility. He might have been a low-level administrative official who belonged to the Gyeongajeon, as documented in the Seungjeongwon ilgi (Daily Records of Royal Secretariat of the Joseon Dynasty). Bak Gyeong-bin is presumed to have moved the tomb of his father to a propitious site and commissioned Ancestral Burial Ground on the Inwangsan Mountain to stress his filial piety, a conservative value, out of his desire to enter the upper class. However, Ancestral Burial Ground on the Inwangsan Mountain failed to live up to its original purpose and ended up as a contradictory image due to its multiple applications and the concern over the exposure of the violation of the prohibition on the construction of tombs on the prohibited area. Forty-seven years after its production, this screen became a part of the collection at the Royal Yi Household Museum with each panel being separated. This suggests that Bak Gyeong-bin's dream of bringing fortune and raising his family's social status by selecting a propitious gravesite did not come true.