• Title/Summary/Keyword: Fibrous materials

Search Result 318, Processing Time 0.024 seconds

Effects of Sintering Additives on the Thermal and Mechanical Properties of AlN by Pressureless Sintering (상압소결 질화알루미늄의 소결 첨가제 변화에 따른 열적 및 기계적 특성)

  • Hwang, Jin Uk;Mun, So Youn;Nam, Sang Yong;Dow, Hwan Soo
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.395-404
    • /
    • 2019
  • Aluminum nitride (AlN) has excellent electrical insulation property, high thermal conductivity, and a low thermal expansion coefficient; therefore, it is widely used as a heat sink, heat-conductive filler, and heat dissipation substrate. However, it is well known that the AlN-based materials have disadvantages such as low sinterability and poor mechanical properties. In this study, the effects of addition of various amounts (1-6 wt.%) of sintering additives $Y_2O_3$ and $Sm_2O_3$ on the thermal and mechanical properties of AlN samples pressureless sintered at $1850^{\circ}C$ in an $N_2$ atmosphere for a holding time of 2 h are examined. All AlN samples exhibit relative densities of more than 97%. It showed that the higher thermal conductivity as the $Y_2O_3$ content increased than the $Sm_2O_3$ additive, whereas all AlN samples exhibited higher mechanical properties as $Sm_2O_3$ content increased. The formation of secondary phases by reaction of $Y_2O_3$, $Sm_2O_3$ with oxygen from AlN lattice influenced the thermal and mechanical properties of AlN samples due to the reaction of the oxygen contents in AlN lattice.

Organic Solvent Absorption Characteristics of Split-type Microfiber Fabrics

  • Lee Kwang Ju;Kim Seong Hun;Oh Kyung Wha
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.280-288
    • /
    • 2004
  • Split-type nylon/polyester microfiber and polyester microfiber fabrics possess drapeability, softness, bulkiness, and smoothness, so that they can be applied in various industrial fields. In particular, these fabrics are able to absorb various organic solvents, and can be used as clean room materials. To investigate the chemical affinity between solvents and the compositional materials of these fabrics, the contact angle of thermally pressed film fabrics was measured with different solvents. The thermally pressed nylon/polyester fabric films showed a chemical attraction to formamide. The sorption properties of the microfiber fabrics were investigated using a real time testing device, and these tests showed that the sorption behavior was more influenced by the structure of the fibrous assembly than by any chemical attraction. The effect of the fabric density, specific weight, and sample structure on the sorption capacity and rate was examined for various organic solvents. The sorption capacity was influenced by the density and the specific weight of the fibrous assembly, and knitted fabric showed a higher sorption capacity than woven fabric. However, the sorption rate was less affected in lower viscosity solvents. On applying Poiseuille's Law, the lower viscosity solvents showed higher initial sorption rates, and more easily penetrated into the fibrous assembly.

THE USE OF ENDOSCOPY IN ENUCLEATION OF JAW CYSTS (악골 낭종 적출술시 내시경의 이용)

  • Kim, Young-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.1
    • /
    • pp.61-64
    • /
    • 2001
  • This study evaluated the use of endoscopy to examine jaw cysts during the operation. Fifteen jaw cysts were explored with a endoscope immediately before and after enucleation. Endoscopic findings were evaluated and recorded with video tape. Before enucleation, there were many white fibrous floating materials within the cystic cavity. Cystic lining showed smooth and regular appearance with capillary network. However, there were some fibrous scar tissues and irregular architecture in preoperative infection. After enucleation, there were white shiny bony surfaces with fresh vascular network. In some cases, floating fibrous tissues remained after removal.

  • PDF

Fabrication of Various Carbides with Fibrous and Particulate Shapes by Self-Propagating High Temperature Synthesis Method (자전연소합성법에 의한 여러 가지 섬유상 및 입상 탄화물의 제조)

  • Bang, Hwan-Cheol;Yun, Jon-Do
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.343-349
    • /
    • 2000
  • Fabrication of various carbide fibers from carbon fibers and elementary powders of Ti, Zr, Nb, Zi, W, B, and Mo by self-propagating high temperature synthesis was attempted. It was found the almost pure phase of TiC, ZrC, NbC, SiC, $B_4$C, and $Mo_2$C carbides were successfully produced. The three types of morphologies were ob-served, TiC, ZrC, NbC, and $B_4$C had a hollow-type fibrous shape. SiC had fiber shape consisting of smaller particles and fine whiskers. WC and $Mo_2$C had non-fibrous shapes. The reason for the different morphologies was explained. The formation mechanism of hollow fibers was suggested.

  • PDF

Flame Retardant Properties of Basalt Fiber Reinforced Epoxy Composite with Inorganic Fillers (무기 필러가 첨가된 현무암섬유 강화 에폭시 복합재료의 난연 특성)

  • Mun, So Youn;Lee, Su Yeon;Lim, Hyung Mi
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • Basalt fiber reinforced epoxy composites with inorganic filler (BFRP-F) such as Mg(OH)2 (magnesium hydroxide), Al(OH)3 (aluminum hydroxide), Al2O3 (aluminum oxide) and AlOOH (boehmite) were prepared by hand lay-up and hot pressing. The combustive properties of BFRP-F were improved comparing with basalt fiber reinforced epoxy composite (BFRP) without inorganic filler. At a 30 wt% resin content, the limited oxygen index (LOI) of BFRP is 28.9, which is higher than that of epoxy (21.4), and the LOI of BFRP-F is higher than that of BFRP. The BFRP-F showed the lower peak heat release rate (PHRR), total heat release (THR) and total smoke release rate (TSR) than those of BFRP. We confirmed that the flame retardant properties of the composite were improved by the addition of inorganic filler through the dehydration reaction and oxide film formation.

Thermal and Rheological Characterizations of Polycarbosilane Precursor by Solvent Treatment (폴리카보실란 전구체의 용매 처리에 따른 열적 및 유변학적 특성 분석)

  • Song, Yeeun;Joo, Young Jun;Shin, Dong Geun;Cho, Kwang Youn;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • Polycarbosilane(PCS) is an important precursor for melt-spinning the silicon carbide(SiC) fibers and manufacturing ceramics. The PCS is a metal-organic polymer precursor capable of producing continuous SiC fibers having excellent performance such as high-temperature resistance and oxidation resistance. The SiC fibers are manufactured through melt-spinning, stabilization, and heat treatment processes using the PCS manufactured by synthesis, purification, and control of the molecular structure. In this paper, we analyzed the effect of purification of unreacted substances and low molecular weight through solvent treatment of PCS and the effect of heat treatment at various temperatures change the polymerization and network rearrangement of PCS. Especially, we investigated the complex viscosity and structural arrangement of PCS precursors according to solvent treatment and heat treatment through the rheological properties.