• Title/Summary/Keyword: Fibrous materials

Search Result 318, Processing Time 0.029 seconds

Fine Structure of the Spermatogenic Cells during the Spermiogenesis of Paradoxornis webbiana (붉은머리 오목눈이 (Paradoxornis webbiana)의 정자변태 과정 중 정자형성세포의 미세구조)

  • Lee, Jung-Hun;Hahm, Kyu-Hwang
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.245-256
    • /
    • 2001
  • The morphological characteristics of spermatogenic cells during the spermiogenesis of Paradoxornis webbiana were studied by transmission electron microscope. Spermiogenesis of P. webbiana was divided into ten phase. The chromatin granules became fibrous granules at the Golgi phase, gradually condensed at the cap phases, condensed as a stick at the acrosomal phase, and finally, a perfect nucleus was formed at the maturation phase. The formation of sperm tail began at the early Golgi phase, and completed at the late maturation phase. In particular, the dense materials existed in the sperm neck, which is wedged between the tip of segmented columns and the first mitochondria of the middle piece. The axone in the neck were surrounded by the dense materials. The axonema in spermatozoon contains a 9+2 arrangement of microtubules: 9 doublets, and 2 central single microtubules. Mitochondrial bundles of middle piece were composed of a pair of arms, which surrounded the axone of the middle piece by the $15^{\circ}$ angled-helical structure. The outer membrane of mitochondria were surrounded by microtubules in plasma membrane of the sperm. The undulating membrane had a helical structure, and the sperm plasma membrane was surrounded by undulating membrane.

  • PDF

A Study on Adhesion Characteristics of Co-cured Long Fiber Prepreg Sheet-Aluminum Hybrid Structures (동시 경화 장섬유 복합재료-알루미늄 혼성 구조물의 접착 특성 연구)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Long Fiber Prepreg Sheet (LFPS) has the advantages of excellent production efficiency and formability for complex shapes compared to conventional continuous fiber reinforced composites. When fibrous composites are used with different materials, joining method is important because strength of the joining part determines the strength of the hybrid structure. In this study, the adhesive joint strengths of co-cured LFPS and aluminum were evaluated under various surface treatment conditions and environmental conditions (temperature and moisture conditions). Mechanical abrasion and plasma exposure were used for the surface treatment. The adhesive joints experienced various surface treatments were tested by using single lap joint specimens. Adhesive strengths under various conditions were compared and the most appropriate condition was determined.

Micropatterning on Biodegradable Nanofiber Scaffolds by Femtosecond Laser Ablation Process (펨토초 레이저 절삭 공정을 이용한 생분해성 나노섬유 표면 미세 패터닝 공정)

  • Chung, Yongwoo;Jun, Indong;Kim, Yu-Chan;Seok, Hyun-Kwang;Chung, Seok;Jeon, Hojeong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.555-559
    • /
    • 2016
  • A biodegradable nanofiber scaffolds using electrospining provide fibrous guidance cues for controlling cell fate that mimic the native extracellular matrix (ECM). It can create a pattern using conventional electrospining method, but has a difficulty to generate one or more pattern structures. Femtosecond(fs) laser ablation has much interested in patterning on biomaterials in order to distinguish the fundamental or systemic interaction between cell and material surface. The ablated materials with a short pulse duration using femtosecond laser that allows for precise removal of materials without transition of the inherent material properties. In this study, linear grooves and circular craters were fabricated on electrospun nanofiber scaffolds (poly-L-lactide(PLLA)) by femtosecond laser patterning processes. As parametric studies, pulse energy and beam spot size were varied to determine the effects of the laser pulse on groove size. We confirmed controlling pulse energy to $5{\mu}J-20{\mu}J$ and variation of lens maginfication of 2X, 5X, 10X, 20X created grooves of width to approximately $5{\mu}m-50{\mu}m$. Our results demonstrate that femtosecond laser processing is an effective means for flexibly structuring the surface of electrospun PLLA nanofibers.

Conductive Carbon Block Filled Composites( II ) - Concentrated on Processabilily - (전도성 카본블랙이 충진된 도전성 고분자 복합재료(II) -가공성을 중심으로 -)

  • Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.113-120
    • /
    • 1999
  • Nobody doubts to say that one of the most important performance polymers is a conductive polymer. The manufacturing process of the commercial conductive polymers has been known by mixing with the conductive materials, but it doesn't noticeably appear of a conductive function. One of the reasons is the lack of comprehension In compounding a carbon black with polymer rosins. This paper involves the understanding of compounding technology of the conductive carbon black filled composite. Our experimental results indicate that the fibrous shaped carbon black was hard to process but appeared of a superior conductivity compared to a stick or a sphelulite shaped carbon black. Therefore, it was processed with a processing oil in compounding, which led to a better processability and a better conductivity. This study was accomplished that the solution process compared to the melting process.

  • PDF

Healing after Implantation of Bone Substitutes and Safflower Seeds Feeding in Rat Calvarial Defects (백서 두개골 결손부의 골 대체물 이식과 홍화씨 섭취 후의 치유양상)

  • You, kyung-Tae;Choi, Kwang-Soo;Yun, Gi-Yon;Kim, Eun-Chul;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.91-104
    • /
    • 2000
  • Many synthetic bone materials have been studied for their potential of regenerative effects in periodontal tissue. Safflower seeds have been traditionally used as a drug for the treatment of fracture and blood stasis in oriental medicines. The purpose of this study was to assess and compare the osseous responses in rat calvarial defects between bone substitutes such as calcium carbonate and bovine-derived hydroxyapatite and feeding of safflower seeds. The calvarial defects were made with 8 mm trephine bur in 24 Sprague-Dawley rats. Two graft materials were implanted in each experimental groups, whereas the control and safflower seed feeding groups were sutured without any other treatment. And then the rats of safflower seed feeding group were supplied with 3 g/day of safflower seeds. Each group was sacrificed at 4 weeks and 8 weeks. To study a histopathology related to bone healing and regeneration, Goldner's Masson Trichrome stain was done at each weeks. The tissue response was evaluated under light microscope. There were more osteoblastic activity, new bone formation, dense bony connective tissues in bovine-derived hydroxyapatite group compared to other groups at 8 weeks. The osseous defect area of safflower seed feeding group was filled with prominent fibrous tissues, where less inflammatory infiltration and new capillary proliferation. In the early phase of bone healing, safflower seed feeding reduces the inflammatory response and promotes the proliferation of connective tissue. These results suggest that natural bovine-derived HA and safflower seed feeding could enhance the regenerative potential in periodontal defects.

  • PDF

Fabrication of ZnO and TiO2 Nanocomposite Fibers and Their Photocatalytic Decomposition of Harmful Gases (ZnO와 TiO2 함유 복합나노섬유의 제조와 유해물질분해 성능 평가)

  • Hur, Yoon-Sun;Lee, Seung-Sin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.11
    • /
    • pp.1297-1308
    • /
    • 2011
  • This research investigates the application of ZnO (zinc oxide) nanoparticles and $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via an electrospinning technique for the development of textile materials that can decompose harmful gases. To fabricate uniform ZnO nanocomposite fibers, two types of ZnO nanoparticles were applied. Colloidal $TiO_2$ nanoparticles were chosen to fabricate $TiO_2$ nano- composite fibers. ZnO/poly(vinyl alcohol) (PVA) and $TiO_2$/PVA nanocomposite fibers were electrospun under a variety of conditions that include various feed rates, electric voltages, and capillary diameters. The morphology of electrospun nanocomposite fibers was examined with a field-emission scanning electron micro- scope and a transmission electron microscope. Decomposition efficiency of gaseous materials (formaldehyde, ammonia, toluene, benzene, nitrogen dioxide, sulfur dioxide) by nanocomposite fiber webs with 3wt% nano-particles (ZnO or $TiO_2$) and 7$g/m^2$ web area density was assessed. This study shows that ZnO nanoparticles in colloid were more suitable for fabricating nanocomposite fibers in which nanoparticles are evenly dispersed than in powder. A heat treatment was applied to water-soluble PVA nanofiber webs in order to stabilize the electrospun nanocomposite fibrous structure against dissolution in water. ZnO/PVA and $TiO_2$/PVA nanofiber webs exhibited a range of degradation efficiency for different types of gases. For nitrogen dioxide, the degradation efficiency was 92.2% for ZnO nanocomposite fiber web and 87% for $TiO_2$ nanocomposite fiber web after 20 hours of UV light irradiation. The results indicate that ZnO/PVA and $TiO_2$/PVA nano- composite fiber webs have possible uses in functional textiles that can decompose harmful gases.

Synthesis of Silver Nanofibers Via an Electrospinning Process and Two-Step Sequential Thermal Treatment and Their Application to Transparent Conductive Electrodes (전기방사법과 이원화 열처리 공정을 통한 은 나노섬유의 합성 및 투명전극으로의 응용)

  • Lee, Young-In;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.562-568
    • /
    • 2012
  • Metal nanowires can be coated on various substrates to create transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these metal nanowire based transparent conductive films is that the resistance between the nanowires is still high because of their low aspect ratio. Here, we demonstrate high-performance transparent conductive films with silver nanofiber networks synthesized by a low-cost and scalable electrospinning process followed by two-step sequential thermal treatments. First, the PVP/$AgNO_3$ precursor nanofibers, which have an average diameter of 208 nm and are several thousands of micrometers in length, were synthesized by the electrospinning process. The thermal behavior and the phase and morphology evolution in the thermal treatment processes were systematically investigated to determine the thermal treatment atmosphere and temperature. PVP/$AgNO_3$ nanofibers were transformed stepwise into PVP/Ag and Ag nanofibers by two-step sequential thermal treatments (i.e., $150^{\circ}C$ in $H_2$ for 0.5 h and $300^{\circ}C$ in Ar for 3 h); however, the fibrous shape was perfectly maintained. The silver nanofibers have ultrahigh aspect ratios of up to 10000 and a small average diameter of 142 nm; they also have fused crossing points with ultra-low junction resistances, which result in high transmittance at low sheet resistance.

Development of Anti-aging from Natural Materials by Inhibition of UV Stimulating (자외선 자극에 의한 피부노화 억제 천연물 소재 개발)

  • Dang, Su-Min
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.251-257
    • /
    • 2021
  • ln this study, natural extracts extracted from cypress sapiens, a natural material, were investigated as materials that could protect skin aging caused by ultraviolet rays, and experiments were conducted on the synthesis of filaggrins that make up the natural moisturizing factor of the skin, the synthesis of pro-colagen, a fibrous protein, which plays an important role in moisturizing the dermis, and elastin, which is an enzyme that decomposes collagen. As a result, cypress ethanol extract (COE) was a dependent inhibitor to collagenase and elastase, inhibiting the synthesis of filaggrin and the expression of MMP-1 for exfoliated cells damaged by ultraviolet rays. Therefore, it is estimated that ethanol extract will have the effect of delaying wrinkles and as a functional cosmetic material that inhibits skin aging convergence. Based on this study, we would like to further study the mechanism of the synthesis of filaggrin on the suppression of expression of MMP, which is the anti-wrinkle effect.

Development and Performance Comparison of Silicon Mixed Shielding Material (실리콘 혼합 차폐체의 개발과 성능비교)

  • Hoi-Woun Jeong;Jung-Whan Min
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.187-195
    • /
    • 2023
  • A shield was made by mixing materials such as bismuth(Bi) and barium(Ba) with silicon to evaluate its shielding ability. Bismuth was made into a shield by mixing a bismuth oxide(Bi2O3) colloidal solution and a silicon base and applied to a fibrous fabric, and barium was made by mixing lead oxide(PbO) and barium sulfate(BaSO4) with a silicon curing agent and solidifying it to make a shield. The test was conducted according to the lead equivalent test method for X-ray protective products of the Korean Industrial Standard. The experiment was conducted by increasing the shielding body one by one from the test condition of 60 kVp, 200 mA, 0.1sec and 100 kVp, 200 mA, 0.1 sec. At 60 kVp, 2 lead oxide-barium sulfate shields, 2 bismuth oxide 1.5 mm shields, and 5 bismuth oxide 0.3 mm shields showed shielding ability equal to or higher than that of lead 0.5 mm. At 100 kVp, 2 lead oxide-barium sulfate shields and 2 bismuth oxide 1.5 mm shields showed shielding ability equal to or higher than that of lead 0.5 mm. It was confirmed that when using 2 pieces of lead oxide-barium sulfate and 1.5 mm of bismuth oxide, respectively, it has shielding ability equivalent to that of lead. Bismuth oxide and lead oxide-barium sulfate are lightweight and have excellent shielding ability, thus they have excellent properties to be used as an apron for radiation protection or other shielding materials.

Femur Fractures Associated with Benign Bone Tumors in Children (양성 골종양을 동반한 소아 대퇴골의 병적 골절)

  • Jung, Sung-Taek;Kim, Byung-Soo;Moon, Eun-Sun;Lee, Keun-Bae;Seo, Hyoung-Yeon
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 2005
  • Purpose: We evaluate the results of treatment of pathologic femur fractures secondary to bone tumors in children. Materials and Methods: Between January 1995 and June 2004, 18 patients(20 cases) were evaluated. Their mean age of the first episode of fracture was 10.2 years and mean follow-up period is 42.5 months. Primary bone tumors, the location of fracture, time to union and complications were evauated. Results: Fractures occurred at proximal portion in 14 cases, shaft 3 cases and distal portion 3 cases. The bone tumors causing pathologic fracture were fibrous dysplasia(9 c ases), simple bone cyst(4 cases), aneurysmal bone cyst(4 cases), nonossifying fibroma(2 cases) and eosinophilic granuloma(1 case). In the treatment for fractures, cast was in 11 cases, internal fixation 8 cases and external fixation in 1 case. In the treatment for tumors, observation was in 11 cases, curettage & bone graft in 8 cases and resection in 1 case. In polyostotic fibrous dysplasia, all cases were treated by cast initially but deformity developed in all cases. Fracture prevention and deformity correction were obtained with intramedullary nailing. Conclusion: Adequate choice of treatment of bone tumor and fracture will result in good prognosis.

  • PDF