• 제목/요약/키워드: Fibronectin type III domain

검색결과 9건 처리시간 0.025초

Fibronectin type III 10 도메인이 조골양 세포에 미치는 생물학적 영향 (Biological Effects of Fibronectin Type III 10 domain on Human Osteoblast-like cells)

  • 이창석;장준혁;김태일;이용무;류인철;정종평;한수부;구영
    • Journal of Periodontal and Implant Science
    • /
    • 제34권2호
    • /
    • pp.293-301
    • /
    • 2004
  • 1. 연구 목적 Fibronectin은 세포외기질의 주요성분인 거대 당단백질로서, 조골세포의 부착과 증식 및 이동능에 중요한 역할을 담당한다고 알려져 있다. 이러한 fibronectin의 조골세포에 대한 영향을 실제 임상에 적용하기 위해서, 전체 fibronectin 단백질을 사용하는 것은 면역학적으로나 경제적으로 많은 단점을 안고 있어서, 유효한 반응단위만을 추출하여 활용하는 것이 바람직한 방법으로 알려져 있다. 이 연구의 목적은 세포부착에 주로 관여하는 fibronectin type III분절 중 10번 도메인이 조골양 세포에 미치는 영향을 전체 fibronectin단백질과 fibronectin type III 7-10 도메인 분절과 비교, 관찰하는 것이다. 2. 연구 방법 사람의 fibronectin을 기초로 한 적절한 primer로서, 유전자 재조합법을 이용하여 fibronectin type III 10 도메인과 fibronectin type III 7-10 도메인 분절을 얻었으며, 전체 fibronectin분자는 상용으로 준비하여 24-well 세포배양 용기에 도포하였다. 배양된 조골양세포(HOS cell)를 $1x10^5$ cells/well의 농도로 각 well에 분주하여 $37^{\circ}C$에서 1시간 배양을 하였다. Cell adhesion assay를 실시하기 위해 10% formaldehyde로 고정시키고 1% Crystal Violet으로 염색하여 광학현미경을 관찰 후 2% SDS를 처리하여 microplate reader기를 이용하여 570nm에서 혼탁정도를 측정하였다. 음성대조군으로는 RPMI 용액을 사용하였다. 동일한 방법을 이용하여 준비된 $35mm^2배양접시에 HOS cell을 $37^{\circ}C$에서 4일간 배양 후, MTS assay를 이용하여 세포 증식도에 미치는 영향을 관찰하였다. 6일째 405nm에서 활성화된 세포에서 분비된 p-nitrophenol을 이용한 alkaline phosphatase activity를 측정하였다. 3. 결과 및 고찰 Fibronectin type III 10 도메인은 HOS cell에 대한 생물학적인 효과면에서, 전체 fibronectin 분자 및 fibronectin type III 7-10 분절과 통계적으로 유사한 세포부착도를 보여주었으며, 세포증식도와 alkaline phosphatse 활성도면에서도 큰 차이가 나타나지 않았다. 이상의 연구결과로 볼 때, fibronectin type III 10 도메인이 조골세포의 증식을 목적으로 사용하는 생체재료의 표면개질 부착물질로 응용할 수 있는 가능성이 있다고 하겠다.

Carboxy-terminus truncations of Bacillus licheniformis SK-1 CHI72 with distinct substrate specificity

  • Kudan, Sanya;Kuttiyawong, Kamontip;Pichyangkura, Rath
    • BMB Reports
    • /
    • 제44권6호
    • /
    • pp.375-380
    • /
    • 2011
  • Bacillus licheniformis SK-1 naturally produces chitinase 72 (CHI72) with two truncation derivatives at the C-terminus, one with deletion of the chitin binding domain (ChBD), and the other with deletions of both fibronectin type III domain (FnIIID) and ChBD. We constructed deletions mutants of CHI72 with deletion of ChBD (CHI72${\Delta}$ChBD) and deletions of both FnIIID and ChBD (CHI72${\Delta}$FnIIID${\Delta}$ChBD), and studied their activity on soluble, amorphous and crystalline substrates. Interestingly, when equivalent amount of specific activity of each enzyme on soluble substrate was used, the product yield from CHI72-${\Delta}$ChBD and CHI72${\Delta}$FnIIID${\Delta}$ChBD on colloidal chitin was 2.5 and 1.6 fold higher than CHI72, respectively. In contrast, the product yield from CHI72${\Delta}$ChBD and CHI72${\Delta}$FnIIID-${\Delta}$ChBD on ${\beta}$-chitin reduced to 0.7 and 0.5 fold of CHI72, respectively. These results suggest that CHI72 can modulate its substrate specificities through truncations of the functional domains at the C-terminus, producing a mixture of enzymes with elevated efficiency of hydrolysis.

Analysis of the Involvement of Chitin-Binding Domain of ChiCW in Antifungal Activity, and Engineering a Novel Chimeric Chitinase with High Enzyme and Antifungal Activities

  • Huang, Chien-Jui;Guo, Shu-Huei;Chung, Shu-Chun;Lin, Yu-Ju;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1169-1175
    • /
    • 2009
  • An antifungal chitinase, ChiCW, produced by Bacillus cereus 28-9 is effective against conidial germination of Botrytis elliptica, the causal agent of lily leaf blight. ChiCW as a modular enzyme consists of a signal peptide, a catalytic domain, a fibronectin type-III-like domain, and a chitin-binding domain. When two C-terminal domains of ChiCW were truncated, $ChiCW{\Delta}FC$ (lacking the chitin-binding domain and fibronectin type III-like domain) lost its antifungal activity. Since $ChiCW{\Delta}C$ (lacking the chitin-binding domain) could not be expressed in Escherichia coli as $ChiCW{\Delta}FC$ did, a different strategy based on protein engineering technology was designed to investigate the involvement of the chitin-binding domain of ChiCW ($ChBD_{ChiCW}$) in antifungal activity in this study. Because ChiA1 of Bacillus circulans WL-12 is a modular enzyme with a higher hydrolytic activity than ChiCW but not inhibitory to conidial germination of Bo. elliptica and the similar domain composition of ChiA1 and ChiCW, the C-terminal truncated derivatives of ChiA1 were generated and used to construct chimeric chitinases with $ChBD_{ChiCW}$. When the chitin-binding domain of ChiA1 was replaced with $ChBD_{ChiCW}$, the chimeric chitinase named ChiAAAW exhibited both high enzyme activity and antifungal activity. The results indicate that $ChBD_{ChiCW}$ may play an important role in the antifungal activity of ChiCW.

[Retraction] A Review on the Role of Irisin in Insulin Resistance and Type 2 Diabetes Mellitus

  • Gizaw, Mamo;Anandakumar, Pandi;Debela, Tolessa
    • 대한약침학회지
    • /
    • 제20권4호
    • /
    • pp.235-242
    • /
    • 2017
  • Irisin is a novel hormone like polypeptide that is cleaved and secreted by an unknown protease from fibronectin type III domain-containing protein 5 (FNDC5), a membrane-spanning protein and which is highly expressed in skeletal muscle, heart, adipose tissue, and liver. Since its discovery in 2012, it has been the subject of many researches due to its potent physiological role. It is believed that understanding irisin's function may be the key to comprehend many diseases and their development. Irisin is a myokine that leads to increased energy expenditure by stimulating the 'browning' of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. Irisin is a powerful messenger, sending the signal to determine the function of specific cells, like skeletal muscle, liver, pancreas, heart, fat and the brain. The action of irisin on different targeted tissues or organs in human being has revealed its physiological functions for promoting health or executing the regulation of variety of metabolic diseases. Numerous studies focus on the association of irisin with metabolic diseases which has gained great interest as a potential new target to combat type 2 diabetes mellitus and insulin resistance. Irisin is found to improve insulin resistance and type 2 diabetes by increasing sensitization of the insulin receptor in skeletal muscle and heart by improving hepatic glucose and lipid metabolism, promoting pancreatic ${\beta}$ cell functions, and transforming white adipose tissue to brown adipose tissue. This review is a thoughtful attempt to summarize the current knowledge of irisin and its effective role in mediating metabolic dysfunctions in insulin resistance and type 2 diabetes mellitus.

벼메뚜기(Oxya chinensis sinuosa Mistshenko) 분말 섭취와 유산소성 운동훈련에 의한 마우스의 에너지 대사 변화 (Effects of Grasshopper (Oxya chinensis sinuosa Mistshenko) Powder and Aerobic Exercise on Energy Metabolism in ICR Mice)

  • 김이슬;전병덕;최석립;김우철;이동운;류승필
    • 한국응용곤충학회지
    • /
    • 제55권1호
    • /
    • pp.53-62
    • /
    • 2016
  • 본 연구의 목적은 벼메뚜기(Oxya chinensis sinuosa) 분말 섭취가 유산소성 운동훈련(트레드밀 달리기)의 병행 유무에 의해 ICR 생쥐의 에너지 대사를 증가시키는지를 알아보고자 하는 것이다. 이 목적을 달성하기 위하여, 28 마리의 ICR 생쥐를 보통식 대조군(CON), 보통식 대조군으로서 운동훈련 병행군(COEX), 벼메뚜기 분말이 혼합된 사료 섭취군(GH), 그리고 벼메뚜기 분말이 혼합된 사료를 섭취함과 동시에 운동훈련을 병행군(GHEX)으로 구분하였다. 벼메뚜기 분말 사료섭취 및 운동은 6주간 진행하였다. 체중증가율은 유의하지 않았다. 지방량은 GH와 GHEX에서 유의하게 감소하였다. 혈중 glutamic oxaloacetic transaminase와 glutamic pyruvic transaminase 수준은 처치 집단간 변화가 없었다. 제2형 당수송체 및 제4형 당수송체는 처치 집단간 유의한 차이가 없었다. GHEX의 fibronectin type III domain-containing protein 5 단백질 발현량이 가장 높았다. AMP-activated protein kinase 단백질 수준은 GHEX에서 유의하게 증가하였다. Glycogen synthase kinase 3 beta 단백질 발현량은 GHEX가 CON과 비교할 때 감소하였다. 이러한 결과들은 벼메뚜기 분말을 섭취하면서 지구성 운동훈련을 하는 경우에 에너지 대사에 영향을 준다는 것을 제시하고 있다.

The effects of peripherally-subacute treatment with irisin on hippocampal dendritogenesis and astrocyte-secreted factors

  • Kim, Mun-Hee;Leem, Yea-Hyun
    • 운동영양학회지
    • /
    • 제23권4호
    • /
    • pp.32-35
    • /
    • 2019
  • [Purpose] Fibronectin type III domain containing 5 (FNDC5)/irisin is an exercise-induced myokine, which contributes to cognitive functions. However, the relationship between the neuroprotective effects of FNDC5/irisin and hippocampal dendritic remodeling and astrocyte-secreted factors remains unclear. Therefore, we explored whether subchronic recombinant irisin treatment affected hippocampal morphology and some astrocyte-derived molecules. [Methods] Mice were intraperitoneally injected with irisin (0.5 μg/kg/day) for seven days, followed by their sacrifice two days later. Hippocampal morphometric parameters were analyzed and pgc-1a, fndc5, bdnf, and some astrocyte-derived factors mRNA levels were measured. [Results] Dendritic length, arborization, and spine density were enhanced by irisin regimen in hippocampal CA1 and CA3 areas. Hippocampal pgc-1a, fndc5, and bdnf mRNA levels were significantly increased by irisin treatment. Moreover, hevin mRNA levels were significantly enhanced, whereas tgf-b1 levels downregulated by irisin treatment. [Conclusion] FNDC5/irisin has dendritogenic activity probably through hevin induction and TGF-β1 suppression.

Comparative study on the cellular activities of osteoblast-like cells and new bone formation of anorganic bone mineral coated with tetra-cell adhesion molecules and synthetic cell binding peptide

  • Yu, Hyeon-Seok;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Yang, Dong-Jun;Park, Kwang-Bum;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제41권6호
    • /
    • pp.293-301
    • /
    • 2011
  • Purpose: We have previously reported that tetra-cell adhesion molecule (T-CAM) markedly enhanced the differentiation of osteoblast-like cells grown on anorganic bone mineral (ABM). T-CAM comprises recombinant peptides containing the Arg- Gly-Asp (RGD) sequence in the tenth type III domain, Pro-His-Ser-Arg-Asn (PHSRN) sequence in the ninth type III domain of fibronectin (FN), and the Glu-Pro-Asp-Ilu-Met (EPDIM) and Tyr-His (YH) sequence in the fourth fas-1 domain of ${\beta}$ig-h3. Therefore, the purpose of this study was to evaluate the cellular activity of osteoblast-like cells and the new bone formation on ABM coated with T-CAM, while comparing the results with those of synthetic cell binding peptide (PepGen P-15). Methods: To analyze the cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed, andto analyze gene expression, northernblot was performed. Mineral nodule formations were evaluated using alizarin red stain. The new bone formations of each group were evaluated using histologic observation and histomorphometrc analysis. Results: Expression of alkaline phosphatase mRNA was similar in all groups on days 10 and 20. The highest expression of osteopontin mRNA was observed in the group cultured with ABM/P-15, followed by those with ABM/T-CAM and ABM on days 20 and 30. Little difference was seen in the level of expression of collagen type I mRNA on the ABM, ABM/T-CAM, and ABM/P-15 cultured on day 20. There were similar growth and proliferation patterns for the ABM/T-CAM and ABM/P-15. The halo of red stain consistent with $Ca^{2+}$ deposition was wider and denser around ABM/T-CAM and ABM/P-15 particles than around the ABM particles. The ABM/T-CAM group seemed to have bone forming bioactivity similar to that of ABM/P-15. A complete bony bridge was seen in two thirds of the defects in the ABM/T-CAM and ABM/P-15 groups. Conclusions: ABM/T-CAM, which seemed to have bone forming bioactivity similar to ABM/P-15, was considered to serve as effective tissue-engineered bone graft material.

Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73

  • Kim, Yong Hwan;Park, Seur Kee;Hur, Jin Young;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.318-328
    • /
    • 2017
  • Chitinase-producing Paenibacillus elgii strain HOA73 has been used to control plant diseases. However, the antimicrobial activity of its extracellular chitinase has not been fully elucidated. The major extracellular chitinase gene (PeChi68) from strain HOA73 was cloned and expressed in Escherichia coli in this study. This gene had an open reading frame of 2,028 bp, encoding a protein of 675 amino acid residues containing a secretion signal peptide, a chitin-binding domain, two fibronectin type III domains, and a catalytic hydrolase domain. The chitinase (PeChi68) purified from recombinant E. coli exhibited a molecular mass of approximately 68 kDa on SDS-PAGE. Biochemical analysis indicated that optimum temperature for the actitvity of purified chitinase was $50^{\circ}C$. However, it was inactivated with time when it was incubated at $40^{\circ}C$ and $50^{\circ}C$. Its optimum activity was found at pH 7, although its activity was stable when incubated between pH 3 and pH 11. Heavy metals inhibited this chitinase. This purified chitinase completely inhibited spore germination of two Cladosporium isolates and partially inhibited germination of Botrytis cinerea spores. However, it had no effect on the spores of a Colletotricum isolate. These results indicate that the extracellular chitinase produced by P. elgii HOA73 might have function in limiting spore germination of certain fungal pathogens.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • 제16권1호
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.