• Title/Summary/Keyword: Fibril formation

Search Result 26, Processing Time 0.02 seconds

Investigation of the effect of Erythrosine B on a β-amyloid (1-40) peptide using molecular modeling method

  • Lee, Juho;Kwon, Inchan;Cho, Art E.;Jang, Seung Soon
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.14-23
    • /
    • 2015
  • Alzheimer's disease is one of the most common types of degenerative dementia. As a considerable cause of Alzheimer's disease, neurotoxic plaques composed of 39 to 42 residue-long amyloid beta($A{\beta}$) fibrils have been found in the patient's brain in large quantity. A previous study found that erythrosine B (ER), a red color food dye approved by FDA, inhibits the formation of amyloid beta fibril structures. Here, in an attempt to elucidate the inhibition mechanism, we performed molecular dynamics simulations to demonstrate the conformational change of $A{\beta}40$ induced by 2 ERs in atomistic detail. During the simulation, the ERs bound to the surfaces of both N-terminus and C-terminus regions of $A{\beta}40$ rapidly. The observed stacking of the ERs and the aromatic side chains near the N-terminus region suggests a possible inhibition mechanism in which disturbing the inter-chain stacking of PHEs destabilizes beta-sheet enriched in amyloid beta fibrils. The bound ERs block water molecules and thereby help stabilizing alpha helical structure at the main chain of C-terminus and interrupt the formation of the salt-bridge ASP23-LYS28 at the same time. Our findings can help better understanding of the current and upcoming treatment studies for Alzheimer's disease by suggesting inhibition mechanism of ER on the conformational transition of $A{\beta}40$ at the molecular level.

  • PDF

Corni Fructus Inhibits Wrinkle Formation by Reduced Advanced glycation end product (AGEs) (산수유의 최종당화산물 억제로 인한 주름 개선효과)

  • Lee, AhReum;Kim, SooHyun;Kim, SuJi;Kim, KyeongJo;Kwon, Ojun;Choi, JoonYoung;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.32 no.5
    • /
    • pp.1-6
    • /
    • 2017
  • Objectives : Corni Fructus (CF) is traditional herbal medicine used on polyuria, low back pain, and tinnitus. This study aimed to evaluate inhibits skin wrinkle formation effect of CF. Methods : To evaluate the produce inhibition effect of CF, SD-rats were distributed into four groups; normal rats (Nor), AGEs (advenced glycation end product)-induced rats (Con), AGEs-induced rats treated with 100mg/kg CF (CF). To induce AGEs, streptozotocin (50mg/kg) was administered intraperitoneally and after 3 days oral administrated 100mM methyl glyoxal for 3 weeks. Results : The oral administration of CF suppressed the reactive oxygen specis (ROS) in serum. The AGEs in skin tissues was significantly reduced through treatment of CF. Furthermore, the expressions of AGEs related proteins such as polyclonal anti-$N^e$-(carboxymethyl)lysine (CML), anti-$N^e$-(carboxyethyl)lysine (CEL), AGE receptors (RAGE) were decreased in CF treated group compared with the control group in skin tissues. Inflammation-related proteins such as Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) reduced in CF treatment group than control group. AGE-induced rats exhibited that the significant decreased collagen however, CF treatment (100mg/kg of body weight) up regulated collagen by improved the expression levels of skin fibril-related genes such as Matrix metalloproteinase (MMP-1). Conclusion : Taken together, our study suggests that CF regulates ROS to prevent accumulation of AGEs and inhibits skin wrinkles. Our finding indicate that CF may be an effective agent for inhibits AGEs formation, and improved skin wrinkle.

Disulfide Bond as a Structural Determinant of Prion Protein Membrane Insertion

  • Shin, Jae Yoon;Shin, Jae Il;Kim, Jun Seob;Yang, Yoo Soo;Shin, Yeon-Kyun;Kim, Kyeong Kyu;Lee, Sangho;Kweon, Dae-Hyuk
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.673-680
    • /
    • 2009
  • Conversion of the normal soluble form of prion protein, PrP ($PrP^C$), to proteinase K-resistant form ($PrP^{Sc}$) is a common molecular etiology of prion diseases. Proteinase K-resistance is attributed to a drastic conformational change from ${\alpha}$-helix to ${\beta}$-sheet and subsequent fibril formation. Compelling evidence suggests that membranes play a role in the conformational conversion of PrP. However, biophysical mechanisms underlying the conformational changes of PrP and membrane binding are still elusive. Recently, we demonstrated that the putative transmembrane domain (TMD; residues 111-135) of Syrian hamster PrP penetrates into the membrane upon the reduction of the conserved disulfide bond of PrP. To understand the mechanism underlying the membrane insertion of the TMD, here we explored changes in conformation and membrane binding abilities of PrP using wild type and cysteine-free mutant. We show that the reduction of the disulfide bond of PrP removes motional restriction of the TMD, which might, in turn, expose the TMD into solvent. The released TMD then penetrates into the membrane. We suggest that the disulfide bond regulates the membrane binding mode of PrP by controlling the motional freedom of the TMD.

Control of Morphology and Subsequent Toxicity of AβAmyloid Fibrils through the Dequalinium-induced Seed Modification

  • Kim, Jin-A;Myung, Eun-Kyung;Lee, In-Hwan;Paik, Seung-R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2283-2287
    • /
    • 2007
  • Amyloid fibril formation of amyloid β/A4 protein (Aβ) is critical to understand the pathological mechanism of Alzheimer's disease and develop controlling strategy toward the neurodegenerative disease. For this purpose, dequalinium (DQ) has been employed as a specific modifier for Aβ aggregation and its subsequent cytotoxicity. In the presence of DQ, the final thioflavin-T binding fluorescence of Aβ aggregates decreased significantly. It was the altered morphology of Aβ aggregates in a form of the bundles of the fibrils, distinctive from normal single-stranded amyloid fibrils, and the resulting reduced β-sheet content that were responsible for the decreased fluorescence. The morphological transition of Aβ aggregates assessed with atomic force microscope indicated that the bundle structure observed with DQ appeared to be resulted from the initial multimeric seed structure rather than lateral association of preformed single-stranded fibrils. Investigation of the seeding effect of the DQ-induced Aβ aggregates clearly demonstrated that the seed structure has determined the final morphology of Aβ aggregates as well as the aggregative kinetics by shortening the lag phase. In addition, the cytotoxicity was also varied depending on the final morphology of the aggregates. Taken together, DQ has been considered to be a useful chemical probe to control the cytotoxicity of the amyloid fibrils by influencing the seed structures which turned out to be central to develop therapeutic strategy by inducing the amyloid fibrils in different shapes with varied toxicities.

Synthesis and Evaluation of Oleanolic Acid-Conjugated Lactoferrin for β-Amyloid Plaque Imaging

  • Kim, Sung-Min;Kim, Dongkyu;Chae, Min Kyung;Jeong, Il-Ha;Cho, Jee-Hyun;Choi, Naeun;Lee, Kyo Chul;Lee, Chulhyun;Ryu, Eun Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3671-3675
    • /
    • 2012
  • ${\beta}$-Amyloid accumulation in the brain is a pathological hallmark of Alzheimer's disease (AD). Since early detection of ${\beta}$-amyloid may facilitate more successful and timely therapeutic interventions, many investigators have focused on developing AD diagnostic reagents that can penetrate the blood-brain barrier (BBB). Oleanolic acid (OA) is a substance found in a variety of plants that has been reported to prevent the progression of AD in mice. In this study, we synthesized and evaluated a new radioligand in which OA was conjugated to lactoferrin (Lf, an iron-binding glycoprotein that crosses the BBB) for the diagnosis of AD. In an in vitro study in which OA-Lf was incubated with ${\beta}$-amyloid (1-42) aggregates for 24 h, we found that OA-Lf effectively inhibited ${\beta}$-amyloid aggregation and fibril formation. In vivo studies demonstrated that $^{123}I$-OA-Lf brain uptake was higher than$^{123}I$-Lf uptake. Therefore, radiolabeled OA-Lf may have diagnostic potential for ${\beta}$-amyloid imaging.

Enhanced Fiber Structure of Carbonized Cellulose by Purification (정제 과정에 의한 탄화 셀룰로오스 섬유 구조의 증가)

  • Kim, Bong Gyun;Sohng, Jae Kyung;Liou, KwnagKyoung;Lee, Hei Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.257-261
    • /
    • 2005
  • The microbial cellulose is in a form of three dimensional net structures that consists of 20~50 nm fibrils. It possesses high crystallinity and orientation. It is difficult to synthesize large amount of fibrous carbon nanomaterials by the carbonization process using raw materials such as polyacrylonitrile (PAN), regenerated cellulose (Rayon) and pitch. However, it seems possible thru the application of microbial cellulose as raw material. The application of such cellulose can be further extended to the synthesis of highly oriented graphite fiber. Out of three different cellulose-producing strains, G. xylinus ATCC11142 was chosen as it has the highest productivity (0.066 g dried cellulose/15 mL medium). Tar is often produced during the carbonization of cellulose that limits the formation fibrous structure of the carbonized sample. In order to solve such a problem, pre-studied purification methods of carbon nanotube such as liquid phase oxidation, gas phase oxidation and filtration associated with ultrasonication were applied at the carbonized cellulose. In that case. only by filtration associated with ultrasonication, improved the formation of fiber structure of the carbonized cellulose.