• Title/Summary/Keyword: Fiber-reinforced polymer wrapping system

Search Result 4, Processing Time 0.016 seconds

Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets (고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험)

  • Shin, Jiuk;Jeon, Jong-Su;Wright, Timothy R.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.

Effect of BFRP Wrapping on Seismic Behavior of Rectangular RC Columns (BFRP 보강이 직사각형 단면 철근콘크리트 기둥의 지진거동에 미치는 영향)

  • Lee, Hyerin;Cho, Junghyun;Lee, Seung-Geon;Lee, Su-Hyung;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.153-160
    • /
    • 2020
  • Columns are one of the most critical parts of a structural system subjected to earthquake excitations. In this regard, extensive experimental studies have been conducted to evaluate the effect of fiber reinforced polymer (FRP) wrapping on the seismic performance of reinforced concrete (RC) columns. Among them, many studies focused on the behavior of circular or square RC columns strengthened with CFRP or GFRP sheets. Since the cross-sectional shape affects confinement by FRP wrapping, its strengthening effect and final damage pattern may differ with shapes. In this study, a series of cyclic tests was conducted to investigate the seismic behavior of rectangular reinforced concrete columns strengthened with basalt-based fiber reinforced polymer (BFRP) sheets and composite fiber panels. The result shows that the effect of strengthening is not significant, and it implies a little increase of confinement by BFRP sheets and composite fiber panels, which is considered partly due to the cross-sectional shape of the columns.

Experimental behavior of eccentrically loaded RC slender columns strengthened using GFRP wrapping

  • Elwan, S.K.;Omar, M.A.
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.271-285
    • /
    • 2014
  • This paper aims to examine the behavior of slender reinforced concrete columns confined with external glass fiber reinforced polymers (GFRP) sheets under eccentric loads. The experimental work conducted in this paper is an extension to previous work by the author concerning the behavior of eccentrically loaded short columns strengthened with GFRP wrapping. In this study, nine reinforced concrete columns divided into three groups were casted and tested. Three eccentricity ratios corresponding to e/t = 0, 0.10, and 0.50 in one direction of the column were tested in each group. The first group was the control one without confinement with slenderness ratio equal 20. The second group was the same as the first group but fully wrapped with one layer of GFRP laminates. The third group was also fully wrapped with one layer of GFRP laminates but having slenderness ratio equal 15. The experimental results of another two groups from the previous work were used in this study to investigate the difference between short and slender columns. The first was control one with slenderness ratio equal 10 and the second was fully wrapped and having the same slenderness ratio. All specimens were loaded until failure. The ultimate load, axial deformation, strain in steel bars, and failure mechanisms of each specimen were generated and analyzed. The results show that GFRP laminates confining system is less effective with slender columns compared with short one, but this solution is still applied and it can be efficiently utilized especially for slender columns with low eccentric ratio.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.