• 제목/요약/키워드: Fiber-orientation

검색결과 572건 처리시간 0.024초

Studies on the Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded

  • Kim, Han-Seong
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.75-76
    • /
    • 2003
  • Current efforts to establish links between geometrical features and mechanical performance of nonwoven fabrics in general, and of point-bonded (spot-bonded) nonwovens in particular, would be served significantly by the measurements of Fiber Orientation Distribution Function (ODF) and tensile modulus which occurs during controlled-deformation experiments. Image analysis technique (using the Fast Furier Transform) is used to quantify the fiber orientation distribution. The results suggest that, within a typical window of processing conditions, ODF has a significant influence on the mechanical anisotropy. The data also suggest that mechanical anisotropy of thermally point-bonded nonwovens is likely to be governed by different stress mode according to the applied macroscopic tensile direction.

  • PDF

GLARE 의 섬유층 배향이 피로층간분리 거동에 미치는 영향 (Influences of Fiber Laminate Orientation on the Behavior of Fatigue Delamination in GLARE)

  • 황진우;송삼홍;김철웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.479-482
    • /
    • 2004
  • The behavior of fatigue delamination in a GLARE(Glass Fiber Reinforced Metal Laminates) under fatigue loading conditions investigated. The behavior of fatigue delamination was examined basing on investigation of the crack and delamination using a SAM (Scanning Acoustic Microscope). The crack and delamination behavior on the relationship among a-N, SAM images and crack length-delamination length were considered. The test results indicated the features of different fatigue delamination and crack growth according to each fiber orientation angle and also obtained to more increase delamination than crack through the relationship between crack length and delamination length in GLARE.

  • PDF

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

Image analysis에 의한 한지와 화지의 섬유 배향성 연구 (The Study of Hanji and Washi Fiber Orientation using Image analysis)

  • 한윤희;에노마에 토시하루;이소가이 아키라
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 추계학술발표논문집
    • /
    • pp.89-96
    • /
    • 2006
  • To estimate the manufacturing district and generation of ancient paper as a cultural property, fiber orientation is one of the criteria. Image analysis using fast Fourier transform with suitable modifications was demonstrated to be an effective means to determine angle and intensity of fiber orientation as a nondestructive method. Binarization process of microscopic images of paper surface and precise calculation for average Fourier coefficients as an angular distribution by linear interpolation were newly introduced in the procedures to improve the accuracy. This analysis method was applied to digital optical micrographs of paper surfaces. Korea and Japanese traditional hand making papers were well distinguished. Korea and Japanese papers made in the traditional ways showed its own characteristic orientation behavior in accordance with the motion of a bamboo wire.

  • PDF

섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동 (Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate)

  • 한경섭;남현욱;정성욱
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.960-968
    • /
    • 2002
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

타설 노즐의 내부 블레이드에 의한 섬유 방향성 제어 성능에 관한 수치 해석적 연구 (Numerical Studies on the Control Performance of Fiber Orientation for Nozzle with Inside Blades)

  • 이종한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.157-163
    • /
    • 2018
  • 본 연구는 기존에 사용되어 지고 있는 타설 노즐 내부에 블레이드를 설치함으로써 타설 시 시멘트 복합체에 혼입된 섬유의 방향성을 제어하고 동시에 분포도를 향상시키고자 하였다. 블레이드 변수 최적화를 위하여 시멘트계 매트릭스 재료의 유동과 혼입된 섬유의 운동, 노즐간의 상호작용을 고려한 다중물리계 유한요소해석을 수행하였다. 사용되는 섬유길이를 변수로 하여 블레이드의 간격, 길이, 위치를 결정하였다. 내부 블레이드 간격이 섬유길이의 약 1.2~2.4배, 블레이드 길이는 섬유길이의 약 4~8배, 설치 위치는 시멘트 복합체가 도출되는 입구에서부터 섬유길이의 14배 이하일 때 섬유 방향각이 약 $15^{\circ}$이하로 제어되었다. 또한, 본 연구에서 제시된 블레이드형 노즐은 기존의 섬유보강 시멘트 복합체 타설장비와 타설관을 그대로 사용하면서, 탈 부착식으로 제작될 수 있어 사용성과 편의성을 동시에 제공할 수 있을 것으로 판단된다.

FRP에서 와인딩 각도에 따른 압축강도의 시뮬레이션과 특성평가 (Simulation and Evaluation of Compressive Strength of FRP According to the Winding Orientation of Glass Fiber)

  • 박효열;강동필;한동희;김인성;표현동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2000
  • The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. Unidirectional FRP made by pultrusion method has comparatively lower compressive strength than tensile strength. Compressive strength of unidirectional FRP may be increased by filament winding layer which has tensile stress when compressive stress was loaded. In this study, compressive strength and stresses of FRP rods were simulated according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method. Simulated value and real evaluated compressive strength were compared to investigate stresses which is prominent to the fracture of FRP. The shear stresses had a great effect on the strength of FRP although the stress of parallel direction of FRP was much higher.

  • PDF

Tribological Properties of Carbon/PEEK Composites

  • Yoon, Sung-Won;Kim, Yun-Hae;Lee, Jin-Woo;Kim, Han-Bin;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제3권3호
    • /
    • pp.142-146
    • /
    • 2013
  • In this study, the effect of Carbon/PEEK composites on the tribological properties has been investigated. Also, its validity has been tested in the capacity of alternative materials of the Ti-based materials used for artificial hip joint. Moreover, this work evaluated the mechanical properties according to the fiber ply orientation, along with the fractured surfaces of the carbon/PEEK composites. The composites with a unidirectional orientation had higher tribological properties than those with a multidirectional orientation. This was caused by the debonding between the carbon fiber and the PEEK, which was proportional to the contact area between the sliding surface and the carbon fiber. The friction test results showed that there were no significant differences in relation to the fiber ply orientation. However, the friction properties of the carbon/PEEK composites were higher than those of the carbon/epoxy composites. In addition, the results showed that a composite that slid in a direction normal to the prepreg lay-up direction had a smaller friction coefficient than one that slid in a direction parallel to the prepreg lay-up direction.