• Title/Summary/Keyword: Fiber-orientation

Search Result 572, Processing Time 0.022 seconds

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.659-670
    • /
    • 2020
  • This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

Optimized design for perforated plates with quasi-square hole by grey wolf optimizer

  • Chaleshtari, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • One major concern that has occupied the mind of the designers is a structural failure as result of stress concentration in the geometrical discontinuities. Understanding the effective parameters contribute to stress concentration and proper selection of these parameters enables the designer get to a reliable design. In the analysis of perforated isotropic and orthotropic plates, the effective parameters on stress distribution around holes include load angle, curvature radius of the corner of the hole, hole orientation and fiber angle for orthotropic materials. This present paper tries to examine the possible effects of these parameters on stress analysis of infinite perforated plates with central quasi-square hole applying grey wolf optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey wolves in nature, and also the present study tries to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of hole on isotropic and orthotropic plates. The advantages of grey wolf optimizer are stout, flexible, simple, and easy to be enforced. The used analytical solution is the expansion of Lekhnitskii's solution method. Lekhnitskii applied this method for the stress analysis of anisotropic plates containing circular and elliptical holes. Finite element numerical solution is employed to examine the results of present analytical solution. Results represent that by selecting the aforementioned parameters properly, fewer amounts of stress could be achieved around the hole leading to an increase in load-bearing capacity of the structure.

Effect of fibers and welded-wire reinforcements on the diaphragm behavior of composite deck slabs

  • Altoubat, Salah;Ousmane, Hisseine;Barakat, Samer
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.153-171
    • /
    • 2015
  • Twelve large-scale composite deck slabs were instrumented and tested in a cantilever diaphragm configuration to assess the effect of fibers and welded wire mesh (WWM) on the in-plane shear capacity of composite deck slabs. The slabs were constructed with reentrant decking profile and reinforced with different types and dosages of secondary reinforcements: Conventional welded wire mesh (A142 and A98); synthetic macro-fibers (dosages of $3kg/m^3$ and $5.3kg/m^3$); and hooked-end steel fibers with a dosage of $15kg/m^3$. The deck orientation relative to the main beam (strong and weak) was also considered in this study. Fibers and WWM were found efficient in distributing the applied load to the whole matrix, inducing multiple cracking, thereby enhancing the strength and ductility of composite deck slabs. The test results indicate that fibers increased the slab's ultimate in-plane shear capacity by up to 29% and 50% in the strong and weak directions, respectively. WWM increased the ultimate in-plane shear capacity by up to 19% in the strong direction and 9% in the weak direction. The results suggest that discrete fibers can provide comparable diaphragm behavior as that with the conventional WWM.

A Study of Texture Through the Depth of Core for BSCCO Superconductor Tape with Pole Figure Analysis (BSCCO 선재에서 극점도를 통한 초전도심의 깊이에 따른 집합조직 연구)

  • 지봉기;주진호;나완수;류경우;박노진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.499-504
    • /
    • 2001
  • We evaluated the degree of texture through depth of the superconductor core of Bi-Sr-Ca-Cu-O(BSCCO) superconductor tape. The degree of texture was characterized by pole figure analysis indicating that the degree of texture varied significantly with depth of the superconductor core. It was observed that the degree of texture was higher near the interface than inside the superconductor core. Specifically, as getting near to the center from the sheath/core interface, the orientation of BSCCO became dispersed from normal direction(ND) which, in turn, resulted in the degradation of <001>-fiber texture. In addition, the <001> texture was non-uniform an, better texture was developed along rolling direction(RD), compared to transverse direction(TD). Microstructural investigation showed that grain alignment was locally degraded by the existence of second phases. I was observed that larger grain size and better texturing were developed near the relatively straight interface compared to those inside the superconducting core. Based on our study, the region near the interface is thought to carry significant current compared to that inside the core.

  • PDF

A Study on Fatigue Crack Propagation Behavior in Random Short-Fiber SMC Composites (비규칙 단섬유강화 SMC 복합재료의 피로균열 전파거동에 관한 연구)

  • Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.204-212
    • /
    • 1990
  • The SMC composite, now being considered in certain structural applications, is anticipated to experience repeated loading during service. Thus, understanding of the fatigue behavior is essential in proper use of the composite material. In this paper, using the SMC composite composed of E-glass chopped strand and unsaturated polyester resin three point bending fatigue tests are carried out to investigate the fatigue crack propagating behavior under various cyclic stresses and fatigue damage of various microcrack forms. The following results are obtained from this study; 1) Most of the total fatigue life of the SMC composite is consumed at the initial extension or the growth of the macroscopic crack. 2) A Paris' type power-law relationship between the crack propagation rate and stress intensity factor range is obtained, and the value of material constant m is much higher (m=9~11)than that of other metals. 3) In case of high cyclic stress the fatigue damage show high microcrack density and short crack length, but in case of low cyclic stress does it vice versa. 4) Fatigue damage is characterized by microcrack density, crack length and distribution of crack orientation.

  • PDF

Design Optimization of Blade Stiffened Laminated Composite Plates (보강된 적층평판의 최적화 설계)

  • Shin, Yung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 1993
  • The buckling load of a blade stiffened laminated composite plate having midplane symmetry is maximized for a given total weight. The thicknesses of the layers and the width and height of the stiffener are taken as the design variables. Buckling analysis is carried out using a finite element method. The optimization problem is solved using an IMSL subroutine. Due to the highly nonlinear nature of the optimality equations, several local optimum solutions are found. Various combinations of fiber orientation for the laminate layers and the blade stiffener are investigated to examine their relative efficiency. Out of several cases examined, the best design was produced from the combination of ($0^{\circ}Beam/0^{\circ}/90^{\circ}$)s.

  • PDF

Influence of Design of Turbulence Generator on Flow Behavior in Pilot Headbox

  • Youn Hye Jung;Lee Hak Lae;Chin Seong Min
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.1-10
    • /
    • 2004
  • The geometry of headboxes is of great importance in obtaining good formation, even basis weight profile and fiber orientation. Therefore, many attentions have been made to examine the influence of the geometry of headboxes on the flow behavior. In this study, to evaluate flow behavior in headboxes, three types of turbulence generators were examined using pilot headbox. Velocity profiles in MD and CD were measured using a pressure monitoring system and flow in headboxes was visualized by dye injection method. CD velocity profiles at three different locations inside the slice of Type A headbox showed that the velocity increased downstream to slice exit and had a pattern with four humps due to the persisting wall effect of step diffusors. Results from the evaluation of normalized velocity profile and flow visualization showed that L-shaped Type C headbox caused a large pressure drop but it lacked in flow stabilizing ability.

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.

Numerical experiments on the determination of stress concentration factors in orthotropic perforated plates subjected to in - plane loading

  • Bambill, D.V.;Rossit, C.A.;Susca, A.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.549-561
    • /
    • 2009
  • As it is known, laminated composite materials are increasingly used in many technological applications, and in some instance, cutouts must be made into laminated panels for practical reasons, changing the stress distribution. The present study deals with the determination of the stress concentration factor that holes of square shape cause in an orthotropic plate subjected to distributed in - plane loading. Square holes of rounded corners in a rectangular plate are considered, and the effect of different combinations of axial and tangential forces applied to its middle plane at the external edges, is studied. The mutually perpendicular axes, which define the principal axes of orthotropy, are assumed in many different directions referred to the sides of the plate. Numerical experiments by means of a finite element code is performed, evaluating the influence of the fiber orientation with respect to the edges of the plate and the characteristics of the orthotropic materials since such structures do not exhibit easily predictable behavior.

The Effect of Molecular Weight and the Linear Velocity of Drum Surface on the Properties of Electrospun Poly(ethylene terephthalate) Nonwovens

  • Kim, Kwan-Woo;Lee, Keun-Hyung;Khil, Myung-Seob;Ho, Yo-Seung;Kim, Hak-Yong
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.122-127
    • /
    • 2004
  • In this study, we evaluated the effect of the molecular weight of the polymer on electrospun poly(ethylene terephthalate) (PET) nonwovens, and their mechanical properties as a function of the linear velocity of drum surface. Polymer solutions and electrospun PET nonwovens were characterized by means of viscometer, tensiometer, scanning electron microscope(SEM), wide angle X-ray diffraction measurement (WAXD) and universal testing machine (UTM). By keeping the uniform solution viscosity, regardless of molecular weight differences, electrospun PET nonwovens with similar average diameter could be obtained. In addition, the mechanical properties of the electrospun PET nonwovens were strongly dependent on the linear velocity of drum surface. From the results of the WAXD scan, it was found that the polymer took on a particular molecular orientation when the linear velocity of drum surface was increased. The peaks became more definite and apparent, evolving from an amorphous pattern at 0 m/min to peaks and signifying the presence of crystallinity at 45 m/min.