• 제목/요약/키워드: Fiber-orientation

검색결과 572건 처리시간 0.04초

인공근육에 적용되는 압전복합재료 작동기의 탄소섬유 배향각과 작동변위의 관계 (Relationship Between CFRP Ply Orientation and Performance Stroke in Piezoelectric Zirconate Titanate Composite Actuator(PZTCA) of Artificial Muscle)

  • 김철웅;이성혁;윤광준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.641-644
    • /
    • 2005
  • The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bemoulli-Euler bending moment (M) when the ply orientations of UD CFRP in Piezoelectric Zirconate Titanate Composite Actuator (PZTCA) are changed. The obtained results as follows. Firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $M^E$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $M^E$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.

  • PDF

섬유강화복합재의 Tribological 특성에 관한 연구 (Tribological Characteristics of Fiber-Reinforced Plastics(FRP))

  • 성인하;여인완;김대은
    • Tribology and Lubricants
    • /
    • 제12권1호
    • /
    • pp.6-14
    • /
    • 1996
  • Experimental investigation on the tribological behavior of fiber-reinforced plastics(FRP) has been studied. It is shown that the frictional behavior of carbon FRP depends on the fiber-orientation while glass FRP does not. The friction coefficient values for carbon FRP were about 0.8, 0.3, and 0.2 for normal, 45$^{\circ}$ and 0$^{\circ}$ sliding directions respectively. Also, the applied load was found to affect the friction coefficient. In the case of this work, 50 gf resulted in the highest value while 200 gf resulted in the lowest value. The friction coefficients for higher loads fell in between the two extreme values.

섬유 분포에 따른 ECC 1축 인장 거동 (Uniaxial Tension Behavior According to the Distribution of Fiber Orientation)

  • 이방연;김윤용;김진근;남관우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.531-532
    • /
    • 2009
  • 이 논문에서는 섬유 분포 특성을 반영하여 균열 간격을 계산할 수 있는 수식을 유도하고, 이를 바탕으로 ECC의 1축 인장 거동을 예측하였다. 예측 결과와 실험 결과는 약 10% 오차가 발생하였다.

  • PDF

콘크리트 패널 내 원형 강섬유의 보강 효율성 (Strengthening Efficiency of Ring Type Steel Fibers in Concrete Panels)

  • 조원택;이차돈;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.327-332
    • /
    • 2001
  • It is generally observed that steel fiber reinforced concrete with traditional straight steel fibers overcomes brittle nature of plain concrete by failure mechanisms by fiber pull-out rather than fiber rupture resulting from fiber yielding or concrete fracture at failured surface. Ring type steel fibers in concrete which is confined in concrete matrix and has better orientation, thus, lead to fiber yielding and concrete fracture as well as increase of flexural behavior of concrete more efficiently, Comparative experimental study is performed in order to measure the relative efficiencies of steel fiber reinforced concrete reinforced with two different fibers. It is found that better toughness is obtained from the ring type steel fiber reinforced concrete than from straight steel fiber reinforced concrete under flexural loading.

  • PDF

Characterization of Fiber Pull-out in Orthogonal Cutting of Glass fiber Reinforced Plastics

  • Park, Gi-Heung
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2003년도 추계 학술논문발표회 논문집
    • /
    • pp.113-117
    • /
    • 2003
  • The reliability of machined fiber reinforced composites (FRC) in high strength applications and the safety in using these components are often critically dependent upon the quality of surface produced by machining since the surface layer may drastically affect the strength and chemical resistance of the material [1,2,3,4]. Current study will discuss the characterization of fiber pull-out in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the fiber pull-out and the AR coefficients is examined first and effects of fiber orientation, cutting parameters and tool geometry on the fiber pull-out are also discussed.

  • PDF

초음파를 이용한 두꺼운 복합재료의 보강섬유 굴곡 평가 (Nondestructive Evaluation of Fiber Waviness in Thick Composites by Ultrasonics)

  • 장필성;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.258-263
    • /
    • 1999
  • In this study, the numerical and experimental investigations were conducted to understand ultrasonic wave propagation and to evaluate the degree of fiber waviness in thick composites nondestructively. The path, energy and traveling time of insonified wave were predicted by adopting the ray and plane wave theories. In the analysis, the composites were assumed to have continuous fiber with sinusoidal waviness in a matrix and were modeled as stacks of infinitesimally short length off-axis elements with varying fiber orientation along the length direction. From the experiments on the specially fabricated thick composite specimens with various degrees of uniform fiber waviness, the energy distributions of received wave were obtain for the various positions of transmitter. It was observed that the energy of wave was converged to the adjacent peaks of fiber waviness. The location where maximum energy of wave was detected from the experiments showed good agreement with the location obtained from theoretical predictions. Finally, the test procedure was Proposed to evaluate fiber waviness in thick composites by considering the energy of wave and relative distance between transmitter and receiver.

  • PDF

SFRSCC의 섬유 방향성에 미치는 입구 속도와 점성의 영향성에 대한 수치해석 (Numerical Investigation of the Density and Inlet Velocity Effects on Fiber Orientation Inside Fresh SFRSCC)

  • ;이종재;이종한;이건준;안윤규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.16-20
    • /
    • 2018
  • 강섬유 보강 자기충전 콘크리트(Steel Fiber Reinforced Self-Compacting Concrete, SFRSCC)는 사회기반 시설이나 초고층 빌딩, 원자력 발전 시설, 병원, 댐, 수로 등 전반적으로 널리 사용되어지고 있는 재료이다. SFRSCC는 짧고, 개별적인 보강 섬유로 인해 일반적인 자기충전 콘크리트(Self-Compacting Concrete, SCC) 보다 인장 강도, 연성, 휨 강성 등에서 뛰어난 성능을 보인다. 하지만 SFRSCC의 이러한 성능은 섬유의 방향성에 의해 크게 좌우되는 경향이 있다. 짧고 개별적인 섬유들은 타설 과정에서 섬유의 방향성을 컨트롤 할 수 없기 때문에 무분별하게 콘크리트 내에 위치하게 된다. 섬유의 방향이 제어되지 않은 상태에서 콘크리트의 경화가 진행될 경우 휨 강성과 인장 강도의 저하를 야기하고, 이는 예상 강도 미달의 원인이 될 수 있기 때문에 SFRSCC를 사용할 때 섬유의 정렬은 중요한 요소가 된다. 따라서 본 연구에서는 유한 요소법을 사용하여 타설 공정 중 콘크리트 매트리스의 점도 및 입구 속도가 섬유 방향에 미치는 영향에 대해 분석하였다.

강섬유콘크리트의 직접인장 거동 특성 (Direct Tensile Behavior of Steel.Fiber Reinforced Concrete)

  • 이신호;고재군
    • 한국농공학회지
    • /
    • 제29권4호
    • /
    • pp.124-131
    • /
    • 1987
  • The aims of this study was to determine the mechanical properties of steel-fiber reinforced concrete under direct tensile loading, and also to insestigate the mechanism fiber reinforcement in order to improve the possible applications of steel-fiber reinforced concrete. In this study the major variables of experimental investigation were fiber conntents, and the lengths and diameters of fibers. The major results obtained are summarized as follows : 1. The strength, elastic modulus and energy absorption capability of steel-fiber reinforced concrete under direct tensile loading were improved as increasing of fiber contents. 2. The direct tensile strength of steel-fiber reinforced concrete was not influenced by the lengths of fiber, but was decreased as increasing of fiber diameters. 3. The direct tensile strength of steel-fiber reinforced concrete was not influenced by the fiber aspect-ratio, but this was because the fiber contents were below the critical value of fiber content. 4. The correlation of direct tensile strength and combined parameter, Vf l/d, was not good. 5. Mutiple cracking and post-crack resistance were investigated at stress-strain curves in direct tensile test. 6. The effect of fiber reinforcement can be influenced by fiber orientation and the bond strength between fiber and matrix. 7. The improvement of mechanical properties of steel-fiber reinforced concrete under direct tensile loading can be theoretically explained by the concept of composite materials.

  • PDF