• Title/Summary/Keyword: Fiber-Reinforced Cement Composite

Search Result 120, Processing Time 0.027 seconds

Characteristics Correlations Between Fiber-Reinforced and Interfacial Adhesion in Carbon fiber reinforced Cement composite Prepared by Slurry Method. (슬러리법에 의한 탄소섬유보강 시멘트복합체의 제조에서 보강섬유와 계면결착제와의 상관특성)

  • Choi, Eung-Kyoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.131-138
    • /
    • 2002
  • The objective of the study is to examine the characteristic correlations between reinforcing carbon fiber and interfacial adhesion agent since the interfacial adhesion strength between reinforcing carbon fiber and matrices is believed to be an essential element influencing the physical properties in carbon fiber reinforced cement composite using slurry method. The integrity of interfacial adhesion between reinforcing fiber and cement not only affects the quality of fiber reinforced cement composite but also influences to a large degree the physical properties of the cement composite when producing carbon fiber reinforced cement composite using slurry method. Having analyzed the physical properties 1.e., water content, tensile strength, flexural strength and flexural toughness of carbon fiber reinforced cement composite specimens, C-PAM(cation polyacrylamide) was determined to be an optimum interfacial adhesion agent. The study has also demonstrated that interfacial adhesion strength varies largely on the content and type of the reinforcing fiber. Judging from magnified view of the tensile shear cross-section using VMS(video microscope system), interfacial adhesion strength between reinforcing fiber and matrices is affected by the type of interfacial adhesion agent. According to the result of the experiments, C-PAM was determined to be an ideal interfacial adhesion agent when using carbon fiber in producing carbon fiber reinforced cement composite with the optimum content of carbon fiber being established.

Evaluation of Electromagnetic Pulse Shielding Performance of Amorphous Metallic Fiber Reinforced Cement Composite (비정질 강섬유 보강 시멘트 복합체의 전자파 차폐성능 평가)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.50-51
    • /
    • 2018
  • In this study, it evaluate the electromagnetic pulse shielding performance of amorphous metallic fiber reinforced cement composite with other steel fiber reinforced cement composite. Hooked-ended steel fiber, smooth steel fiber and amorphous metallic fiber were reinforced 2.0 vol.% in cement composites respectively. The electromagnetic pulse shielding performance was evaluated by MIL-STD-188-125-1. As a result, shielding performance of amorphous metallic fiber reinforced cement composite was higher than Hooked-ended and smooth steel fiber reinforced cement composites. In addition, the relationship between the electrical conductivity and the electromagnetic pulse shielding performance of the cement composite was confirmed.

  • PDF

Tensile Properties of Polyamide Fiber and Hooked Steel Fiber Reinforced Cementitious Composites by Strain Rate (변형속도에 따른 폴라아미드 섬유 및 후크형 강섬유 보강 시멘트 복합체의 인장특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.73-74
    • /
    • 2018
  • In this study, it evaluate the tensile properties of polyamide fiber reinforced cementitious composite and hooked steel fiber reinforced cementitious Composites by strain rate. Polyamide fiber reinforced cement composites (PAFRCC) and Hooked Steel Fiber Reinforced Cement Composite(HSFRCC) were fabricated. Each specimen was reinforced with 1.0 and 2.0vol% fiber. The length of the reinforced fiber was 30 mm for both fibers, and the tensile test specimen was made in dumbbell shape. As a result, the tensile strength of fiber in polyamide fiber and the mechanical bonding between fiber and matrix in hooked steel fiber are considered to be the main factors affecting tensile behavior of fiber reinforced cement composite.

  • PDF

Effect of Strain Rate on Tensile Behavior of Hybrid Fiber Reinforced Cement-based Composites (하이브리드 섬유보강 시멘트복합체의 인장거동에 미치는 변형속도의 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.122-123
    • /
    • 2017
  • In this study, the tensile behavior of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite' s tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Strain Rate Effect on the Tensile Properties of Steel Fiber Hybrid Reinforced Cement Composites (강섬유를 하이브리드 보강한 섬유보강 시멘트복합체의 인장특성에 미치는 변형속도의 영향)

  • Kim, In-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.87-88
    • /
    • 2018
  • In this study, the tensile properties of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite's tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Optimization of Carbonated Cellulose Fiber-Cement Composites

  • Won, Jong-Pil;Bae, Dong-In
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.79-89
    • /
    • 2000
  • This research developed an accelerated curing processe for cellulose fiber reinforced cement composites using vigorous reaction between carbon dioxide and cement paste. A wet-processed cellulose fiber reinforced cement system was considered. Carbonation curing was used to complement conventional accelerated curing. The parametric study followed by optimization investigation indicated that the carbonation curing can enhance the productivity and energy efficiency of manufacturing cellulose fiber reinforced cement composites. This also adds environmental benefits to the technical and economical advantages of the technology.

  • PDF

Investigation on the Applicability of Structures by Evaluating the Static Properties and the Impact Resistance Performance of Amorphous Metallic Fiber Reinforced Cement Composites (비정질 강섬유보강 시멘트복합체의 정역학특성 및 내충격성능 평가를 통한 구조물 적용 가능성 검토)

  • Kang, Il-Soo;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.79-80
    • /
    • 2017
  • This study examined the effect that the amorphous metallic fibers had on the static mechanical properties and the impact resistance of cement composites to those of hooked steel fibers. The hooked steel fiber exhibited pull-out from the matrix after the peak flexural stress was attained, while the amorphous metallic fiber was not pulled out from the matrix, but was instead cut off. In terms of impact resistance, the amorphous metallic fiber reinforced cement composite was found to be more effective at resisting cracking than the hooked steel fiber reinforced cement composite. Therefore, amorphous metallic fiber should be used in fiber reinforced cement composite materials, and for structural materials, and for protection panels.

  • PDF

Strain Rate Effect on the Compressive Properties of Fiber Reinforced Cement Composite (섬유보강 시멘트 복합체의 압축특성에 미치는 변형 속도의 영향)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Nam, Joeng-Soo;Choe, Gyeong-Cheol;Lee, Sang-Kyu;Son, Min-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.214-215
    • /
    • 2017
  • Extreme loads such as impact and explosion have higher strain rate than static loading condition. Therefore, it is necessary to evaluate mechanical properties at high strain rate in order to apply fiber reinforced cement composites to ensure safety performance against impact and explosion. In this study, the compressive properties of fiber reinforced cement composites by strain rate were evaluated.

  • PDF

Strain Properties on Rear Side of Fiber Reinforced Concrete and Cement Composite by Impact Load (충격하중을 받는 섬유보강 콘크리트 및 시멘트 복합체의 배면변형특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Son, Min-Jae;Kim, Gyeong-Tae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.158-159
    • /
    • 2017
  • In this study, it evaluate the strain properties of fiber reinforced concrete and fiber reinforced cement composite. The types of fiber are Hooked steel fiber and it was mixed 0.5, 1.0 vol.% in concrete and 1.0, 2.0 vol.% in cement composites. The impact test was conducted by using a projectile (diameter: 25mm, velocity: 170m/s) and strain properties on the rear side of each specimen was evaluated by strain gage. After the impact test, fracture grade, fracture depth was evaluated.

  • PDF

Evaluation of Crack Control and Permeability of Hydrophilic PVA fiber Reinforced Cement Composite (친수성 PVA 섬유보강 시멘트 복합체의 균열제어 및 투수성 평가)

  • Won Jing-Pil;Hwang Keum-Sik;Park Chan-Gi;Park Hae-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.391-396
    • /
    • 2004
  • Plastic shrinkage crack occurs at the exposed surfaces of freshly placed concrete due to consolidation of the concrete mass and rapid evaporation of water from the surface. This so-called shrinkage crack is a major concern for concrete, especially for flat structures such as pavements, slabs for industrial factories and retaining walls. This study has been performed to obtain the plastic shrinkage and the permeability of hydrophilic poly vinyl alcohol(PVA) fiber reinforced mortar and concrete. Test results indicated that PVA fiber reinforced cement composite showed an ability to reduce the total crack area and the maximum crack width (as compared to plain and polypropylene fiber reinforced concrete). Also, according to the permeability test result, it was found that PVA fiber reinforced cement composite was more reducing than polypropylene fiber reinforced cement composite.