• Title/Summary/Keyword: Fiber tractography

Search Result 28, Processing Time 0.023 seconds

Significance of Preoperative Nerve Reconstruction Using Diffusion Tensor Imaging Tractography for Facial Nerve Protection in Vestibular Schwannoma

  • Yuanlong Zhang;Hongliang Ge;Mingxia Xu;Wenzhong Mei
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.2
    • /
    • pp.183-189
    • /
    • 2023
  • Objective : The facial nerve trace on the ipsilateral side of the vestibular schwannoma was reconstructed by diffusion tensor imaging tractography to identify the adjacent relationship between the facial nerve and the tumor, and to improve the level of intraoperative facial nerve protection. Methods : The clinical data of 30 cases of unilateral vestibular schwannoma who underwent tumor resection via retrosigmoid approach were collected between January 2019 and December 2020. All cases underwent magnetic resonance imaging examination before operation. Diffusion tensor imaging and anatomical images were used to reconstruct the facial nerve track of the affected side, so as to predict the course of the nerve and its adjacent relationship with the tumor, to compare the actual trace of the facial nerve during operation, verify the degree of coincidence, and evaluate the nerve function (House-Brackmann grade) after surgery. Results : The facial nerve of 27 out of 30 cases could be displayed by diffusion tensor imaging tractography, and the tracking rate was 90% (27/30). The intraoperative locations of facial nerve shown in 25 cases were consistent with the preoperative reconstruction results. The coincidence rate was 92.6% (25/27). The facial nerves were located on the anterior middle part of the tumor in 14 cases, anterior upper part in eight cases, anterior lower part in seven cases, and superior polar in one case. Intraoperative facial nerve anatomy was preserved in 30 cases. Among the 30 patients, total resection was performed in 28 cases and subtotal resection in two cases. The facial nerve function was evaluated 2 weeks after operation, and the results showed grade I in 12 cases, grade II in 16 cases and grade III in two cases. Conclusion : Preoperative diffusion tensor imaging tractography can clearly show the trajectory and adjacent position of the facial nerve on the side of vestibular schwannoma, which is beneficial to accurately identify and effectively protect the facial nerve during the operation, and is worthy of clinical application and promotion.

Visual recovery demonstrated by functional MRI and diffusion tensor tractography in bilateral occipital lobe infarction

  • Seo, Jeong Pyo;Jang, Sung Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.2
    • /
    • pp.152-156
    • /
    • 2014
  • We report on a patient who showed visual recovery following bilateral occipital lobe infarct, as evaluated by follow up functional magnetic resonance imaging (fMRI) and diffusion tensor tractography (DTT). A 56-year-old female patient exhibited severe visual impairment since onset of the cerebral infarct in the bilateral occipital lobes. The patient complained that she could not see anything, although the central part of the visual field remained dimly at 1 week after onset. However, her visual function has shown improvement with time. As a result, at 5 weeks after onset, she notified that her visual field and visual acuity had improved. fMRI and DTT were acquired at 1 week and 4 weeks after onset, using a 1.5-T Philips Gyroscan Intera. The fiber number of left optic radiation (OR) increased from 257 (1-week) to 353 (4-week), although the fiber numbers for right OR were similar. No activation in the occipital lobe was observed on 1-week fMRI. By contrast, activation of the visual cortex, including the bilateral primary visual cortex, was observed on 4-week fMRI. We demonstrated visual recovery in this patient in terms of the changes observed on DTT and fMRI. It appears that the recovery of the left OR was attributed more to resolution of local factors, such as peri-infarct edema, than brain plasticity.

A Study on the Fiber Tracking Using a Vector Correlation Function in DT-MRI (확산텐서 트랙토그래피에서 Vector Correlation Function를 적용한 신경다발추적에 관한 연구)

  • Jo, Sung Won;Han, Bong Su;Park, In Sung;Kim, Sung Hee;Kim, Dong Youn
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.214-220
    • /
    • 2007
  • Diffusion tensor tractorgraphy which is based on line propagation method with brute force approach is implemented and the vector correlation function is proposed in addition to the conventional fractional anisotrophy value as a criterion to select seed points. For the whole tractography, the proposed method used 41 % less seed points than the conventional brute force approach for $FA{\geq}0.3$ and most of the fiber tracks in the outer region of white matter were removed. For the corticospinal tract passing through region of interest, the proposed method has produced similar results with 50% less seed points than conventional one.

  • PDF

Diffusion Tensor MRI and Fiber Tractography: Evaluation of Developmental CNS Anomaly: Preliminary Results

  • Lee, Seung-Koo;Kim, Dong-Ik
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.86-86
    • /
    • 2002
  • Purpose: To evaluate the white matter fiber configuration in various developmental CNS anomaly 대상 및 방법: Jubert Syndrome, congenital schizencephaly, callosal agenesis and hemiplegic cerebral palsy patients were evaluated by diffusion tensor MRI. All studies were performed using a 1.5T Philips Gyroscan Intern system. Diffusion weighted imaging was performed using single-shot echo planar imaging, with navigator echo phase correction and SENSE. Diffusion weighting was performed along six independent axes, using diffusion weighting of b=600s/$\textrm{mm}^2$. 128 matrix/zero filled to 256, 23cm FOV, 3mm slice thickness were used for imaging parameters. Data were processed on a Window-2000 PC equipped with IDL and PRIDE (Philips Medical System).

  • PDF

Evaluation of the Neural Fiber Tractography Associated with Aging in the Normal Corpus Callosum Using the Diffusion Tensor Imaging (DTI) (확산텐서영상(Diffusion Tensor Imaging)을 이용한 정상 뇌량에서의 연령대별 신경섬유로의 변화)

  • Im, In-Chul;Goo, Eun-Hoe;Lee, Jae-Seung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.189-194
    • /
    • 2011
  • This study used magnetic resonance diffusion tensor imaging (DTI) to quantitatively analyze the neural fiber tractography according to the age of normal corpus callosum and to evaluate of usefulness. The research was intended for the applicants of 60 persons that was in a good state of health with not brain or other disease. The test parameters were TR: 6650 ms, TE: 66 ms, FA: $90^{\circ}$, NEX: 2, thickness: 2 mm, no gap, FOV: 220 mm, b-value: $800s/mm^2$, sense factor: 2, acquisition matrix size: $2{\times}2{\times}2mm^3$, and the test time was 3 minutes 46 seconds. The evaluation method was constructed the color-cored FA map include to the skull vertex from the skull base in scan range. We set up the five ROI of corpus callosum of genu, anterior-mid body, posterior-mid body, isthmus, and splenium, tracking, respectively, and to quantitatively measured the length of neural fiber. As a result, the length of neural fiber, for the corpus callosum of genu was 20's: $61.8{\pm}6.8$, 30's: $63.9{\pm}3.8$, 40's: $65.5{\pm}6.4$, 50's: $57.8{\pm}6.0$, 60's: $58.9{\pm}4.5$, more than 70's: $54.1{\pm}8.1mm$, for the anterior-mid body was 20's: $54.8{\pm}8.8$, 30's: $58.5{\pm}7.9$, 40's: $54.8{\pm}7.8$, 50's: $56.1{\pm}10.2$, 60's: $48.5{\pm}6.2$, more than 70's: $48.6{\pm}8.3mm$, for the posterior-mid body was 20's: $72.7{\pm}9.1$, 30's: $61.6{\pm}9.1$, 40's: $60.9{\pm}10.5$, 50's: $61.4{\pm}11.7$, 60's: $54.9{\pm}10.0$, more than 70's: $53.1{\pm}10.5mm$, for the isthmus was 20's: $71.5{\pm}17.4$, 30's: $74.1{\pm}14.9$, 40's: $73.6{\pm}14.2$, 50's: $66.3{\pm}12.9$, 60's: $56.5{\pm}11.2$, more than 70's: $56.8{\pm}11.3mm$, and for the splenium was 20's: $82.6{\pm}6.8$, 30's: $86.9{\pm}6.4$, 40's: $83.1{\pm}7.1$, 50's: $81.5{\pm}7.4$, 60's: $78.6{\pm}6.0$, more than 70's: $80.55{\pm}8.6mm$. The length of neural fiber for normal corpus callosum were statistically significant in the genu(P=0.001), posterior-mid body(P=0.009), and istumus(P=0.012) of corpus callosum. In order of age, the length of neural fiber increased from 30s to 40s, as one grows older tended to decrease. For this reason, the nerve cells of brain could be confirmed through the neural fiber tractography to progress actively in middle age.

Evaluation of Quantitative Effectiveness of MR-DTI Analysis with and without Functional MRI (기능적 자기공명영상 사용유무에 따른 확산텐서영상 분석의 유효성 평가)

  • Lee, Dong-Hoon;Park, Ji-Won;Hong, Cheol-Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Purpose: This study was conducted in order to evaluate the quantitative effectiveness of region of interest (ROI) setting in MR-DTI analysis with and without fMRI activation results. Methods: Ten right-handed normal volunteers participated in this study. DTI and fMRI datasets for each subject were obtained using a 1.5T MRI system. For neural fiber tracking, ROIs were drawn using two methods: The drawing points were located in the fMRI activation areas or areas randomly selected by users. In this study, the neural fiber tract targeted the corticospinal tract (CST) Quantitative analyses were performed and compared. The pixel numbers passing through the fiber tract in the individual brain volume were counted. The ratios between the ROI pixel numbers and the extracted fiber pixel numbers, and the ratios between the fiber pixel numbers and the whole-brain pixel numbers were also calculated. Results: According to our results, extracted CST fiber tract in which the ROI was drawn with fMRI activation areas showed higher distribution than drawing the ROI by users' hands. In addition, the quantitatively measured values represented higher pixel distribution: The counted average pixel numbers were 4553.8 and 1943.3. The average ratios of the ROI areas were 33.87 and 22.52. The average percentages of the individual whole-brain volume numbers were 2.06 and 0.87. Conclusion: Results of this study appear to indicate that use of this method can allow for more objectives and significant for study of the recovery of neural fiber mechanisms and brain rehabilitation.

A Study on the Characteristics of Plant Fiber Materials for Diffusion Tensor Imaging Phantom (확산텐서영상 팬텀 제작을 위한 식물섬유 재료의 특성에 관한 연구)

  • Lee, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.475-480
    • /
    • 2020
  • The purpose of this study was to reconstruct diffusion tensor tractography (DTT) using stem of garlic and asparagus for in vitro phantom of diffusion tensor imaging (DTI), and to compare and evaluate the fractional anisotropy (FA) value and the apparent diffusion coefficient (ADC) value to determine whether it can be used as materials for in vitro phantoms. Among various plant fibers such as stem of garlic, palmae, cotton, asparagus, etc., stem of garlic and asparagus, which are considered to be the most suitable for making phantoms, and whose shape is considered to be the most suitable for making phantoms, were selected and tests were conducted. Holes were made in a plastic bucket at an angle of 0°, 30°, 60°, 90°, and 120°, then tubes were inserted. In the tube, asparagus and stem of garlic were inserted as far in as possible, and the inserted tube was inserted into the center of the heat bathed gelatin to harden. We were able to reproduce DTT images in asparagus and stem of garlic. Fiber tissues of asparagus and stem of garlic did not show complete connectivity, but the reconstructed images of DTT showed good connectivity. The FA values of asparagus in the tubes were 0.198 at 0° (straight), 0.207 at 30°, 0.187 at 60°, 0.231 at 90°, and 0.204 at 120°. In addition, the FA values of stem of garlic in the tubes were 0.235 at 0°, 0.236 at 30°, 0.216 at 60°, 0.218 at 90°, and 0.257 at 120°. The ADC values of asparagus in the tubes were 1.545 at 0°, 1.677 at 30°, 1.629 at 60°, 1.535 at 90°, and 1.725 at 120°. In addition, the ADC values of stem of garlic in the tubes were 1.252 at 0°, 1.396 at 30°, 1.698 at 60°, 1.756 at 90°, and 1.466 at 120°. For the best expressed DTT reconstruction image, it showed the longest connectivity in the straight line as we hypothesized. In addition, when comparing the FA values and ADC values of fiber tissues of stem of garlic and asparagus, FA value was generally higher in stem of garlic and ADC value was slightly higher in asparagus.

Difference in Injury of the Corticospinal Tract and Spinothalamic Tract in Patients with Putaminal Hemorrhage

  • Jang, Sung Ho;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.6
    • /
    • pp.358-362
    • /
    • 2019
  • Purpose: We investigated the difference in injury of the corticospinal tract (CST) and the spinothalamic tract (STT) in patients with putaminal hemorrhage, using diffusion tensor tractography (DTT). Methods: Thirty one consecutive patients with PH and 34 control subjects were recruited for this study. DTT scanning was performed at early stage of PH (7-63 days), and the CST and STT were reconstructed using the Functional Magnetic Resonance Imaging of Brain (FMRIB) Software Library program. Injury of the CST and STT was defined in terms of the configuration or abnormal DTT parameters was more than 2 standard deviations lower than that of normal control subjects. Results: Among 31 patients, all 31 patients (100%) had injury of the CTS, whereas 25 patients (80.6%) had injury of the STT: the incidence of CST injury was significantly higher than that of STT (p<0.05). In detail, 20 (64.5%) of 31 patients showed a discontinuation of the CST in the affected hemisphere; in contrast, 14 patients (45.2%) of 31 patients showed a discontinuation of the STT in the affected hemisphere. Regarding the FA value, 6 (19.4%) of 31 patients and 2 (6.4%) of 31 patients were found to have injury in the CST and STT, respectively. In terms of the fiber number, the same injury incidence was observed in 11 patients (35.5%) in both the CST and STT. Conclusion: The greater vulnerability of the CST appears to be ascribed to the anatomical characteristics; the CST is located anteriorly to the center of the putamen compared with the STT.

Usefulness of DTI-based three dimensional corticospinal tractography in children with hemiplegic cerebral palsy (편마비를 가진 뇌성마비 환아에서 확산 텐서강조영상을 이용한 3차원 피질척수로 영상의 유용성)

  • Yeo, Ji Hyun;Son, Su Min;Lee, Eun Sil;Moon, Han Ku
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • Purpose : Magnetic resonance diffusion tensor imaging-based three-dimensional fiber tractography (DTI-FT) is a new method which demonstrates the orientation and integrity of white matter fibers in vivo. However, clinical application on children with cerebral palsy is still under investigation. We present various abnormal patterns of DTI-FT findings and accordance rate with clinical findings in children with hemiplegic cerebral palsy, to recognize the use fulness of DTI-FT. Methods : The thirteen children with hemiplegic cerebral palsy evaluated at Yeungnam University hospital from March, 2003 to August, 2007 were enrolled in this study and underwent magnetic resonance DTI-FT of the corticospinal tracts. Two regions of interest (ROI) were applied and the termination criteria were fractional anisotropy ${\geq}0.3$, angle ${\leq}70^{\circ}$. Results : The patterns and distribution of abnormal DTI-based corticospinal tractographic findings were interruption(10 cases, 76.9%), reduction of fiber volume (8 cases, 61.5%), agenesis of corticospinal tract (3 cases, 23.1%), transcallosal fiber (2 cases, 15.4%) and, aberrant corticospinal tracts (4 cases, 30.8%). Abnormal DTI-based corticospinal tractographic findings were in accordance with the clinical findings of cerebral palsy in 84.6% of the enrolled patients. Conclusion : Our results suggest that DTI-FT would be a use ful modality in the assessment of the corticospinal tract abnormalities in children with hemiplegic cerebral palsy.

A Understanding of the Temporal Stem

  • Choi, Chan-Young;Han, Seong-Rok;Yee, Gi-Taek;Lee, Chae-Heuck
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.5
    • /
    • pp.365-369
    • /
    • 2010
  • Objective : There has been inconsistency about definition of the temporal stem despite of several descriptions demonstrating its microanatomy using fiber dissection and/or diffusion tensor tractography. This study was designed to clarify three dimensional configurations of the temporal stem. Methods : The fronto-temporal regions of several formalin-fixed human cerebral hemispheres were dissected under an operating microscope using the fiber dissection technique. The consecutive coronal cuts of the dissected specimens were made to define the relationships of white matter tracts comprising the temporal stem and the subcortical gray matters (thalamus, caudate nucleus, amygdala) with inferior limiting (circular) sulcus of insula. Results : The inferior limiting sulcus of insula, limen insulae, medial sylvian groove, and caudate nucleus/amygdala were more appropriate anatomical structures than the roof/dorso-lateral wall of the temporal horn and lateral geniculate body which were used to describe previously for delineating the temporal stem. The particular space located inside the line connecting the inferior limiting sulcus of insula, limen insulae, medial sylvian groove/amygdala, and tail of caudate nucleus could be documented. This space included the extreme capsule, uncinate fasciculus, inferior occipito-frontal fasciculus, anterior commissure, ansa peduncularis, and inferior thalamic peduncle including optic radiations, whereas the stria terminalis, cingulum, fimbria, and inferior longitudinal fiber of the temporal lobe were not passing through this space. Also, this continued posteriorly along the caudate nucleus and limiting sulcus of the insula. Conclusion : The temporal stem is white matter fibers passing through a particular space of the temporal lobe located inside the line connecting the inferior limiting sulcus of insula, limen insulae, medial sylvian groove/amygdala, and tail of caudate nucleus. The three dimensional configurations of the temporal stem are expected to give the very useful anatomical and surgical insights in the temporal lobe.