• Title/Summary/Keyword: Fiber surface engineering

Search Result 1,142, Processing Time 0.032 seconds

A Study on the Weight Loss Treatment and Characteristics of Nylon 6 Fiber (나일론 6 섬유의 감량가공 및 특성 연구)

  • Lim, Sung Chan;Lee, Hyun Woo;Lee, Hyun Jae;Won, Jong Sung;Jin, Da Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.175-183
    • /
    • 2015
  • Weight loss treatment of a fiber leads an improvement of its handle and drape properties. Hydrolysis of a fiber is commonly known as a method to reduce its weight of 5-40%. Most of the studies on the weight loss treatment are mainly based on polyester fibers and there has been almost no study on the weight reduction of nylon fibers. In this study, however, in order to develop a use of nylon 6 fiber for the industrial applications such as toothbrush, underwear, carpet and more, weight loss treatment of a nylon 6 fiber was carried out. Under various treatment conditions, morphological analysis were done to observe the change in the structure of the surface and analysis. From the observation of formic acid treated nylon 6 fiber, there were many etched and deformed morphologies. Thermal and crystalline properties were analyzed to find the changes in the crystal structure caused by the weight loss treatment. There were little differences in the crystalline properties of nylon 6 fiber by formic acid treatment. Tensile strength of nylon 6 fiber decreases with acid concentration. The FITR peak intensity of the amide bond decreases with formic acid concentration.

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.

Study of transfer film in the sliding of nanoscale CuO-filled and fiber-reinforced polyphenylene sulfide (PPS) composites (CuO nanoparticle 및 fiber 로 구성된 PPS 복합재료의 sliding 조건하의 transfer film 에관한 연구)

  • Cho, Min-Haeng;Bahadur, Shyam;Park, Hye-Young;Kim, Yoon-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.967-972
    • /
    • 2004
  • The role of transfer films formed during sliding of polymer composites against steel counterfaces was studied in terms of the tribological behaviors of composites. Four kinds of composites were included in this study: (1) unfilled PPS, (2) PPS+2%CuO, (3) PPS+2%CuO+5% carbon fiber (CF), and (4) PPS+2%CuO+15%Kevlar. The filler material CuO was in nanoscale particulate form and the reinforcing material was in the form of short fibers. The composites were prepared by compression molding at $310^{\circ}C$ and sliding tests were run in the pin-on-disk sliding configuration. The counterface was made of tool steel hardened to 55-60 HRC and finished to a surface roughness of 0.09-0.10 ${\mu}m$ Ra. Wear tests were run for 6 hrs at the sliding speed of 1 m/s and contact pressure of 0.65 MPa. Transfer films formed on the counterfaces during sliding were investigated using AFM and SEM. The results showed that as the transfer film became smooth and uniform, wear rate decreased. PPS+2%CuO+15%Kevlar composite showed the lowest steady state wear rate in this study and its transfer film showed the smoothest and the most uniform characteristics. The examination of worn surfaces of PPS+2%CuO composite using X-ray area scanning (dot mapping) showed back-transfer of steel counterface material to the polymer pin surface. This behavior is believed to strengthen the polymer pin surface during sliding thereby contributing to the decrease in wear rate.

  • PDF

Effect of Thermal Aging on the Change of Interfacial Adhesion between Polyketone Cord and Rubber by RFL Primer Treatment (RFL 프라이머 처리에 따른 폴리케톤 코드사와 고무 간의 계면접착성 변화에 열노화가 미치는 영향)

  • Jo, Hani;Oh, Woo Jin;Kang, Song Hee;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.77-89
    • /
    • 2018
  • In the case of fiber/rubber composites for tire applications, the interfacial adhesion between fiber and rubber significantly affects the physical properties of the finished products. Generally, organic synthetic fibers used for tire cords are treated with resorcinol formaldehyde latex(RFL) primer on the surface of the fiber to improve the adhesion to rubber. Changes of adhesion between rubber and tire cords might weaken as temperature rises due to overheating of car engine and friction with road. In this study, the effects of temperature on the primer treated polyketone cord/rubber composites and the changes in interfacial adhesion were investigated. Polyketone cord/rubber composites were prepared after RFL solution treatment on the surface of polyketone fibers. After that, composites was thermally aged at different temperature conditions(60, 80, 100, $120^{\circ}C$) and times(1, 5, 10, 15days). The adhesion strength of polyketone cord/rubber composite treated with RFL primer was higher than untreated composite by more than 3 times. After heat aging, the adhesion strength of untreated polyketone cord/rubber composites increased while the RFL treated polyketone cord/rubber composites decreased somewhat.

A Novel Frequency Selective Surface: Frequency Selective Fabric Composite (새로운 주파수 선택 표면: 주파수 선택적인 직물 복합 재료)

  • Lee, Sang-Eui;Kim, Chun-Gon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.920-928
    • /
    • 2006
  • Fiber-reinforced composites transmitting microwaves of certain frequencies or bands were proposed. These frequency selective fabric composites(FSFCs) are fabricated by weaving carbon fibers and dielectric fibers that build periodic patterns. Design parameters affecting the electromagnetic characteristics of FSFCs were widely discussed, Then the electromagnetic characteristics of a fabricated plain-weave FSEC were investigated with regard to the electrical conductivities of carbon roving, the fiber undulation, and the aperture-to-cell ratio, for the electrical conductivities, its dependence on frequency as well as on the fiber volume fraction of carbon roving was taken into account. Constituent material properties and the fiber undulation had little effect on the EM properties of the fabricated FSFC, while the aperture-to-cell ratio made a profound effect on them.

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.

A study on the improvement of impregnation on the surface of injection-molded thermoplastic woven carbon fabric composite (열가소성 직물탄소복합소재 사출 성형품의 표면 함침 개선에 관한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2021
  • In molding of continuous fiber-reinforced thermoplastic composites, it is very difficult to impregnate between the reinforcements and the matrix since the matrix has a high melting temperature and high viscosity. Therefore, most of composite molding processes are divided in the manufacturing processes of intermediate materials called prepreg and the forming of products from intermediate materials. The divided process requires additional facilities and thermoforming, and they increase the cycle time and cost of composite products. These problems can be resolved by combining the continuous fiber-reinforced composite molding process with injection molding. However, when a composite material is manufactured by inserting woven fabric into the injection mold, poor impregnation occurs on the surface of the molded product. It affects the properties of the composites. In this paper, through an impregnation experiment using cores with different heat transfer rates and pore densities, the reason for the poor impregnation was confirmed, and molding experiments were conducted to produce composite with improved surface impregnation by inserting the mesh. And also, the surface impregnation and deformation of composites molded using different types of mesh were compared with each other.

Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA (탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 -)

  • Kim, Minyoung;Kim, Jihong;Kim, Wonho;Kim, Booung;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.894-900
    • /
    • 1998
  • An interphase between carbon fiber and epoxy matrix was introduced to increase impact strength of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of $RCOO^-$ functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concentration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight gain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.

  • PDF

Evaluation on the Mechanical Performance of Concrete Using Entanglement Polyamide Fiber (다발형 폴리아미드섬유 보강 콘크리트의 역학적 성능평가)

  • Jeon, Joong Kyu;Kim, Gyu Yong;Jeon, Chan Ki;Lee, Soo Choul
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • Steel fiber is high stiffness and large weight. So, Pumping hose to rupture of the safety management is difficult. Steel fiber caused by corrosion of the deterioration of durability and high-rebound losses are needed for the improvements. Thus, the revised regulations in 2009 by a steel fiber to reinforce other materials is possible. Variety of fiber reinforcement material for concrete review of applicability is needed. Steel fiber strength than the other fibers is large and by the geometry of the fibers are attached to improve performance. However, compared to steel fiber organic fibers and low modulus of elasticity and tensile strength of fiber and agglomeration occurs in the concrete to be used as reinforcement material is difficult. In this regard, the present study as a single object in the micro-fiber bouquet sharp entanglement through make muck attach surface area, distributed fibers from surfactant of the surface enhanced polyamide fibers, steel fiber and PP fiber reinforced concrete by comparing the scene to provide a basis for the use.

Direct Tensile Properties of Fiber-Reinforced Cement Based Composites according to the Length and Volume Fraction of Amorphous Metallic Fiber (비정질 강섬유의 길이 및 혼입률에 따른 섬유보강 시멘트복합체의 직접인장특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Choe, Gyeong-Cheol;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • In this study, the direct tensile properties of amorphous metallic fiber-reinforced cement based composites according to the strain was evaluated. A thin plate-shape amorphous metallic fiber with 15mm and 30mm in length was used. And fiber-reinforced cement based composites were prepared with contents of 1.0, 1.5, 2.0%. The direct tensile test was conducted under the conditions of $10^{-6}/s(static)$ and $10^1/s(dynamic)$ strain rate. As a results, amorphous metallic fiber with a length of 15mm was observed in pull-out behavior from the cement matrix because of the short fiber length and large portion of mixed fiber. On the other hand, amorphous metallic fiber with a length of 30mm were not pulled out from matrix because the bonding force between the fiber and matrix was large due to rough surface and large specific surface area. However, fracture occurred because thin plate shape fibers were vulnerable to shear force. Tensile strength, strain capacity and toughness were improved due to the increase in the fiber length. The dynamic increase factor of L15 was larger that of L30 because the bonding performance of the fiber-matrix interface is significantly affected by the strain rate.