• Title/Summary/Keyword: Fiber sheet

Search Result 623, Processing Time 0.018 seconds

A Study on the Shear Strengthening Characteristic of Reinforced Concrete T-shaped Beams (철근콘크리트 T형보의 전단 보강 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Moon, Keum Hwan;Yoo, Myeong Hwan;Lee, Chang Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.10-18
    • /
    • 2012
  • Most of studies on existing strengthening methods were mainly on increase of stiffness and strength of shear strengthening to rectangular beam. As concrete of beam and slab is poured simultaneously on the characteristics of construction in reinforced concrete beam-slab structure, adjacent slab uniformed after hardening has T-shaped beam cross section which makes the flange of beam, enhances the stiffness of the beam and widens the area supporting compressive strength, but available data of flexural behavior of T-shaped beam are lacking. In this research the T-shaped beams would be made, then the reinforced effects and structural properties can be estimated according to the kinds of reinforced materials and reinforced position. The conclusions are shown as below. To sum up the experimental results, The specimen which was reinforce by CB embedded inside of concrete indicated excellent resistive behavior, internal force and stiffness when it was destroyed. The steel plate reinforced specimen of stiffness and internal force were increase but it expressed lower reinforce effects because of lowering anchored force between concrete. Fiber sheet strengthening showed superior effects but the interfacial delamination was found due to the lack of anchored force in destruction. So the measure is needed now.

Manufacture and Qualification of Composite Main Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 주반사판 제작 및 검증)

  • Dong-Geon Kim;Hyun-Guk Kim;Dong-Yeon Kim;Kyung-Rae Koo;Ji-min An;O-young Choi
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.219-225
    • /
    • 2024
  • It is essential to develop a light-weight, high-performance structure for the deployable reflector antenna, which is the payload of a reconnaissance satellite, considering launch and orbital operation performance. Among them, the composite main reflector is a key component that constitutes a deployable reflector antenna. In particular, the development of a high-performance main reflector is required to acquire high-quality satellite images after agile attitude control maneuvers during satellite missions. To develop main reflector, the initial design of the main reflector was confirmed considering the structural performance according to the laminate stacking design and material properties of the composite main reflector that constitutes the deployable reflector antenna. Based on the initial design, four types of composite main reflectors were manufactured with the variable for manufacturing process. As variables for manufacturing process, the curing process of the composite structure, the application of adhesive film between the carbon fiber composite sheet and the honeycomb core, and the venting path inside the sandwich composite were selected. After manufacture main reflector, weight measurement, non-destructive testing(NDT), surface error measurement, and modal test were performed on the four types of main reflectors produced. By selecting a manufacturing process that does not apply adhesive film and includes venting path, for a composite main reflector with light weight and structural performance, we developed and verified a main reflector that can be applied to the SAR(Synthetic Aperture Rader) satellite.

Chemical Modification of Silk by Ethylene Cyanohydrin (에틸렌 시아노히드린에 의한 실크의 화학적 개질)

  • Lee, Geun-Souk;Bae, Do-Gyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.26
    • /
    • pp.23-30
    • /
    • 2008
  • In this paper, when the silk fabric was modified by ethylene cyanohydrine, the reaction mechanism between both was studied at various treatment conditions such as curing temperatures and times, ethylene cyanohydrin concentrations and $ZnCl_2$ concentrations. Through the FT-IR and DSC analyses of the treated silk fabrics, we found the results as follows : It was observed in FT-IR analysis of the treated silk fabrics that the -OH characteristic peak($3,450cm^{-1}$)position and shape were all changed when drying and curing treatment conditions were at $80^{\circ}C$ for 3 minute and $110^{\circ}C$ for 2.5 minute, and the concentration of the $ZnCl_2$ was 0.1%. It indicated that the -OH group of the silk participated in the reaction between the silk fabric and ethylene cyanohydrin. From the DSC analysis, it was found that the pyrolysis temperatures of the treated silk fabrics by ethylene cyanohydrin which was processed in the same condition, were all increased from $311^{\circ}C$ to ab. $320^{\circ}C$. From the FT-IR analyses of the silk fabrics treated by ethylene cyanohydrin at the various concentrations of $ZnCl_2$, it was found that the -OH characteristic peaks($3,450cm^{-1}$) were similar to the nontreated one except that of the fabric treated at the $ZnCl_2$ conconcentration of 0.8% when drying and curing treatment conditions were at $80^{\circ}C$ for 3minute and $110^{\circ}C$ for 2.5 minute, and the concentration of the ethylene cyanohydrin was 5%. In the case of the $ZnCl_2$ concentration of 0.8% solution, a lot of change were observed in peak. From the DSC analysis of the treated silk fabrics which was processed in the same condition, it was showed that the pyrolysis temperatures of treated silk fabric were all increased from $311^{\circ}C$ to ab. $320^{\circ}C$, which was no relation with the concentration of $ZnCl_2$.

  • PDF