• 제목/요약/키워드: Fiber reinforcement concrete

검색결과 692건 처리시간 0.025초

보강재를 사용한 철근 콘크리트 보의 내력보강에 관한 실험적 연구 (An Experimental Study on Improved Bearing-Capacity of Reinforced Concrete Beam Using Reinforcement Materials)

  • 홍상균;박기철;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.495-500
    • /
    • 1996
  • In this paper, it is the effect of using fiber sheet (Carbon Fiber Sheet & Aramid Fiber Sheet) and Steel Plate for reinforced concrete beam, 25 specimens are tested, 16 specimens for bending capacity and the other are for shear capacity. In the case of bending testing, the kind and quantity of the reinforcement materials, the bondage and the existence of crack were selected as experimental variables. And in the case of shear testing, it is testified the effect of reinforcement with the variables of the method of reinforcement (side type and U type). As a result, using the reinforcement meterials can increase the capacity of bending stress.

  • PDF

전단보강근이 없는 섬유보강 철근콘크리트 보의 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Fiber-Reinforced Concrete Beam Without Shear Reinforcement)

  • 김정섭;고송균;최진석
    • 한국건축시공학회지
    • /
    • 제3권3호
    • /
    • pp.83-90
    • /
    • 2003
  • This study examines the material characteristics of fibers and their influences on reinforced concrete through the tests of reinforced concrete by the types of fibers including non-reinforced, steel, polypropylene and cellulose fibers and the test of compressive strength and reinforced concrete beam without shear reinforcement and consequently it obtains the following conclusions. As a result of conducting compressive strength by the types of specimens, fiber reinforced specimen with the highest compressive strength value at 28 days of age was cellulose fiber reinforced specimen as 280.4kgf/$\textrm{cm}^2$ and steel fiber specimen had the highest compressive strength of 250.7kgf/$\textrm{cm}^2$ at 180 days of age. In case of non-reinforced specimen, its compressive strength was 277.4kgf/$\textrm{cm}^2$ at 28 days of age and 273.1kgf/$\textrm{cm}^2$ at 180 days of age. Comparing the compressive strength of non-reinforced specimen to that fiber reinforced specimen showed that the compressive strength of fiber reinforced specimen was lower in the passage of age and the results of this experiment showed no effects of fiber reinforcement. As a result of testing reinforced concrete beam without shear reinforcement, ductility factors of specimens were 4.67 for non-reinforced specimen, 8.18 for steel fiber reinforced specimen, 6.20 for polypropylene fiber reinforced specimen and 5.49 for cellulose reinforced specimen, and it is found that steel fiber reinforced specimen was highest. When non-reinforced specimen and steel fiber reinforced specimen were compared, steel fiber reinforced specimen had higher ductility factor of about 75.2% than that of non-reinforced specimen.

반복하중을 받는 철근콘크리트 연결보에서 강섬유의 보강효과에 관한 연구 (A Study on the Effect of Steel Fiber in Reinforced Concrete Coupling Beam Subjected to Cyclic Loading)

  • 김진성;배백일;최창식
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.181-190
    • /
    • 2019
  • In this study, four reinforced concrete coupling beams were subjected to cyclic lateral loading test to evaluate the structural performance of coupling beam according to volume fraction of steel fiber. For this purpose, the volume fraction of steel fiber(0%, 1%, 2%) and transverse reinforcement spacing were determined as the main parameter. According to the test results, the maximum strength of D-40C-s100-0 was 1.15, 1.13, 1.05 times higher than D-40C-s300-0, D-40C-s300-1, D-40C-s300-2, respectively. The maximum strength of coupling beams with mitigated rebar details increases as the volume fraction of steel fiber increases. Although steel fiber 2% reinforced specimen(D-40C-s300-2) did not satisfy the amount of transverse reinforcement required for seismic design of coupling beam, the overall performance including to maximum strength, ductility and energy dissipation capacity was similar to the control specimen(D-40C-s100-0). As a result, the use of steel fiber with 2% reinforcement can partially replace the transverse reinforcement in diagonally reinforced concrete coupling beam.

A new method for earthquake strengthening of old R/C structures without the use of conventional reinforcement

  • Tsonos, Alexander-Dimitrios G.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.391-403
    • /
    • 2014
  • In this study an innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets (i.e., longitudinal reinforcement, stirrups, hoops). The proposed in this study innovative steel fiber high-strength or ultra high-strength concrete jackets were proved to be much more effective than the reinforced concrete jackets and the FRP-jackets when used for the earthquake-resistant strengthening of reinforced concrete structural members.

노후 콘크리트포장 위에 덧씌운 섬유그리드 보강 아스팔트포장의 장기공용성 (Long-term Performance of Fiber Grid Reinforced Asphalt Pavements Overlaid on Old Concrete Pavements)

  • 이주명;백승범;이강훈;김조순;정진훈
    • 한국도로학회논문집
    • /
    • 제19권3호
    • /
    • pp.31-43
    • /
    • 2017
  • PURPOSES : The objective of this study is to verify the effect of fiber grid reinforcement on the long-term performance of asphalt pavement overlaid on old concrete pavement by performing field investigation, laboratory test, and finite element analysis. METHODS : The reflection cracking, roughness, and rutting of fiber grid reinforced overlay sections and ordinary overlay sections were compared. Cores were obtained from both the fiber grid reinforced and ordinary sections to measure bonding shear strength between the asphalt intermediate and asphalt overlay layers. Fracture energy, displacement after yield, shear stiffnesses of the cores were also obtained by analyzing the test results. Finite element analysis was performed using the test results to validate the effect of the fiber grid reinforcement on long-term performance of asphalt pavement overlaid on the old concrete pavement. The fatigue cracking and reflection-cracking were predicted for three cases: 1) fiber grid was not used; 2) glass fiber grid was used; 3) carbon fiber grid was used. RESULTS : The reflection-cracking ratio of fiber grid reinforced sections was much smaller than that of ordinary sections. The fiber grid reinforcement also showed reduction effect on rutting while that on roughness was not clear. The reflection-cracking was not affected by traffic volume but by slab deformation and joint movement caused by temperature variation. The bonding shear strength of the fiber grid reinforced sections was larger than that of the ordinary sections. The fracture energy, displacement after yield, and shear stiffnesses of the cores of the fiber grid reinforced sections were also larger than those of the ordinary sections. Finite element analysis results showed that fatigue cracking of glass or carbon fiber grid reinforced pavement was much smaller than that of ordinary pavement. Carbon fiber grid reinforcement showed larger effect in elongating the fatigue life of the ordinary overlay pavement compared to glass fiber grid reinforcement. The binder type of the overlay layer also affected the fatigue life. The fiber grid reinforcement resisted reflection-cracking and the carbon fiber grid showed the greater effect. CONCLUSIONS :The results of field investigation, laboratory test, and finite element analysis showed that the fiber grid reinforcement had a better effect on improving long-term performance of asphalt pavement overlaid on the old concrete pavement.

강섬유콘크리트의 직접인장 거동 특성 (Direct Tensile Behavior of Steel.Fiber Reinforced Concrete)

  • 이신호;고재군
    • 한국농공학회지
    • /
    • 제29권4호
    • /
    • pp.124-131
    • /
    • 1987
  • The aims of this study was to determine the mechanical properties of steel-fiber reinforced concrete under direct tensile loading, and also to insestigate the mechanism fiber reinforcement in order to improve the possible applications of steel-fiber reinforced concrete. In this study the major variables of experimental investigation were fiber conntents, and the lengths and diameters of fibers. The major results obtained are summarized as follows : 1. The strength, elastic modulus and energy absorption capability of steel-fiber reinforced concrete under direct tensile loading were improved as increasing of fiber contents. 2. The direct tensile strength of steel-fiber reinforced concrete was not influenced by the lengths of fiber, but was decreased as increasing of fiber diameters. 3. The direct tensile strength of steel-fiber reinforced concrete was not influenced by the fiber aspect-ratio, but this was because the fiber contents were below the critical value of fiber content. 4. The correlation of direct tensile strength and combined parameter, Vf l/d, was not good. 5. Mutiple cracking and post-crack resistance were investigated at stress-strain curves in direct tensile test. 6. The effect of fiber reinforcement can be influenced by fiber orientation and the bond strength between fiber and matrix. 7. The improvement of mechanical properties of steel-fiber reinforced concrete under direct tensile loading can be theoretically explained by the concept of composite materials.

  • PDF

특수 가공된 셀룰로오스섬유보강 콘크리트의 초기 특성 (Properties of Specialty Cellulose Fiber Reinforced Concrete at Early Ages)

  • 원종필;박찬기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.349-354
    • /
    • 1999
  • Specialty cellulose fibers processed for the reinforcement of concrete offer relatively high levels of elastic modulus and bond strength. The hydrophilic surfaces of specialty cellulose fibers facilitate their dispersion and bonding in concrete. Specialty cellulose fibers have small effective diameters which are comparable to the cement particle size, and thus promote close packing and development of dense bulk and interface microstructure in the matrix. The relatively high surface area and the close spacing of specialty cellulose fibers when combined with their desirable mechanical characteristic make them quite effective in the suppression and stabilization of microcracks in the concrete matrix. The properties of fresh mixed specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to the restrained shrinkage crack reduction potential of cement composites at early age and theirs evaluation are presented in this paper. Results indicated that specialty cellulose fiber reinforcement showed an ability to reduce the total area significantly (as compared to plain concrete and polypropylene fiber reinforced concrete.

  • PDF

유기계 섬유로 하이브리드 보강된 콘크리트의 휨 거동 및 염분침투저항성 (Chloride Penetration Resistance and Flexural Behavior of Hybrid Organic Fibers Reinforced Concrete)

  • 김승현;강민범;이동욱
    • 한국지반신소재학회논문집
    • /
    • 제14권4호
    • /
    • pp.105-115
    • /
    • 2015
  • 본 연구에서는 매크로섬유를 PP섬유로 대체하여 유기계 섬유들인 PVA섬유 6mm와 PP섬유 50mm로 하이브리드 보강된 콘크리트의 역학적 특성을 파악하기 위해 섬유의 체적비를 주요변수로 하이브리드 섬유 보강 콘크리트(HFRC) 4배합과 섬유가 없는 Plain콘크리트 1배합을 실험하여 비교하였다. 섬유의 체적비를 1%미만으로 제한하였다. 연구결과 유기계 섬유의 하이브리드 보강은 콘크리트의 강성 및 연성거동을 강섬유만큼 극대화시키지는 못하지만, Plain콘크리트와 비교시 매우 진전된 연성거동을 보이며 휨 인성지수와 등가휨강도 사이의 의미 있는 관계를 확인하였다. 그리고 유기계 섬유로 하이브리드 보강한 콘크리트에서도 섬유의 체적비가 증가할수록 연성이 증가하였고 섬유의 하이브리드를 위해 사용한 마이크로섬유인 PVA섬유보다 매크로섬유인 PP섬유가 콘크리트의 휨 거동에 미치는 영향이 크며, 염분침투시험에서도 섬유의 혼입이 염분침투를 억제하는 효과가 있는 것으로 확인되었다.

최소 전단철근 대용으로의 강섬유 콘크리트의 전단기여도 평가 (Evaluation on Shear Contribution of Steel Fiber Reinforced Concrete in Place of Minimum Shear Reinforcement)

  • 김철구;박홍근;홍건호;강수민
    • 콘크리트학회논문집
    • /
    • 제27권6호
    • /
    • pp.603-613
    • /
    • 2015
  • 현행 콘크리트 구조기준에는 전단파괴의 취성적 특성을 고려하여 휨 부재에 최소전단철근을 배근하도록 규정하고 있고, 강섬유 보강 콘크리트 사용시 강섬유가 최소전단철근을 대신하여 사용가능하도록 허용하고 있다. 본 연구에서는 이러한 최소전단철근과 강섬유가 전단강도에 미치는 영향을 단순지지 보 실험을 통해 분석하였다. 실험결과를 살펴보면, 강섬유 보강이 최소 전단철근보다 전단강도에 미치는 영향이 크게 나타났고 특히, 고강도콘크리트가 사용된 경우 강섬유 효과가 크게 발휘되었다. 강섬유 콘크리트의 특성을 살펴보기 위해 기존 실험 자료를 분석하였고 현행 기준에 사용되고 있는 최소전단철근 대용으로의 강섬유 보강 콘크리트 보의 적절성을 평가하였다.

탄소섬유쉬트로 횡구속된 RC기둥의 압축거동 (Axial Compressive Behavior of R/C Columns Confined with Carbon Fiber Sheets)

  • 신성우;이광수;심성택;송민성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.727-732
    • /
    • 2001
  • External Confinement of concrete in CFS enhances strength and ductility of concrete columns. This paper presents the test results on the study of reinforced concrete columns strengthened with carbon fiber sheets. The purpose of this research is to evaluate the CFS confinement characteristics of square reinforced concrete columns and the CFS efficiency. The tests were performed with different lateral reinforcement ratios, CFS reinforcement ratios and concrete strength. Test results were characterized according to maximum loads and lateral strain of CFS.

  • PDF