• Title/Summary/Keyword: Fiber particle

Search Result 362, Processing Time 0.023 seconds

Studies on the Manufacture of Fiber Pot and its Effect for the Good Transplanting (이식용(移植用)Pot의 제조(製造) 및 그 효과(効果)에 관(關)한 연구(硏究))

  • Kim, Ji Moon;Lee, Hwa Hyung;Kwon, Ki Won;Song, Ho Kyong
    • Journal of Korean Society of Forest Science
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 1980
  • This study was carried out to examine the substitution possibility into fiber pot instead of Jiffy pot for the good transplanting. Fiber pot was made of fiber, wood waste particle, and bark powder (10% of the particle weight) and also latex was added into the furnish as a binder. The pots were sprayed with just enough urea solution to prevent nitrogen deficiency of pot media coming from the breakdown of wood fiber in the pot wan during the plant growing. The utility of fiber pot was compared with that of Jiffy pot in the service test of two tree species under a green-house condition. The results obtained can be summarized as follows ; 1. Fiber pot made of 30% wood fiber+70% particle including 10% of bark powder, and 3%-latex has shown a good results like that of Jiffy pot in the sp. gr., tear factor and burst factor. For water absorption, fiber pot made of 50% fiber+50% particle, and 3%-latex got the best result. In the consideration of the above physical and mechanical properties of the fiber pot for good root penetration through the pot wall and facile handling, fiber pot made of 30% fiber+70% particle, and 3%-latex may be seemed to be good. 2. There were no harms in sapling growth in fiber pot as well as in Jiffy pot. The root penetration ability through the fiber pot was slightly inferior to that of Jiffy pot, and yet the pot damage through transportation seemed to be slighter in fiber pot than in Jiffy pot.

  • PDF

Numerical analysis of particle behavior around a bipolar charged electret fiber (정전 섬유필터 주위의 입자포집 및 거동에 관한 수치해석적 연구)

  • An, Gang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1509-1517
    • /
    • 1997
  • Charged and uncharged particle motions and collection characteristics around a bipolar charged rectangular shape electret fiber are studied numerically. Particle inertia, fluid drag, Coulomb force and polarization force are considered to predict the particle motion around the electret fiber. The effects of particle sizes, flow velocities, number of charges and polarities are also systematically investigated. For small size particles, the single fiber collection efficiency is greatly dependent on the charge polarity and the number of charges on a particle. However, particles larger than 5.mu.m do not show charging effect on collection efficiencies in the flow velocity ranges from 1.5 cm/s to 150 cm/s when the maximum charges are within +5 to -10. The results show that a strong electric field gradient at the corner of the bipolar charged fiber plays a very important role on collecting particles regardless of its charge polarity because of the polarization force. It also shows that the most penetrating particle size for a single electret fiber decreases as the flow velocity increases and the number of charges of a particle decreases.

Tensile Strength of Composites from Hanji(Korean paper) Sludge Mixed with Wood Fiber or Pariticle (한지 슬러시-목재 섬유 또는 목재 파티클 복합재의 인장강도)

  • 이필우;손정일;이영규
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 1999
  • This research was carried out to investigate the Hanji sludge(black color)-wood fiber and wood particle composited applied by waste sludges arising from the making process of Hanji (Korea paper). In experimental design, four levels of the mixed ratio of Hanji sludge to wood fiber or wood particle(10:90, 20:80, 30:70 and 40:60), three kinds of the resin(PMDI, urea and phenol resin)and three kinds of the specific gravity(0.6, 0.75 and 0.9) were designed to determine the tensile strength of Hanji sludge-wood fiber and wood particle composites. From the results and discussion, it may be concluded as follows: In Hanji sludge-wood fiber and wood particle composites, tensile strengths showed decreasing tendency absolutely by increasing Hanji sludge additive, but clearly increase with the increase of specific gravity. In Hanji sludge-wood fiber composites, there were no differences between PMDI and urea resin-bonded composites, but phenol resin-boned composites were made possibly until the addition of 30% Hanji sludge. On the other hand, Hnji sludge-wood particle composites(SpGr=0.6) have very low tensile strength values. But they were made favorably until the addition of 20% Hanji sludge in Hanji sludge-wood particle composites(SpGr=0.9).

  • PDF

Numerical Simulation of Particle Deposition Pattern on Cylindrical Fiber under External Electrical Field (외부 전기장내의 단일 섬유에 대한 먼지층 형사 수치 모사)

  • 박현설;정용원;박영옥;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.41-51
    • /
    • 1999
  • In this study, the two dimensional morphology of particle accumulates on a cylindrical fiber was numerically simulated when a uniform external electric field was present across a cylindrical fiber. In order to investigate the mechanism of linear dendrite formation which is observed under the above electrostatic condition, the electrostatic forces between a newly introduced particle and each deposited particle were calculated and compared with those between the particle and fiber As a result of this study it was found that dielectrophoretic forces between the oncoming particle and fiber play principal roles in linear dendrite formation.

  • PDF

Effects of Reinforcements Type on Mechanical Properties of Metal Matrix Composites (보강재의 형태와 종류가 금속복합재료의 기계적 물성에 미치는 영향 연구)

  • 남현욱;조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.79-82
    • /
    • 2001
  • In this research, tile effects of reinforcements type on mechanical properties of MMCs were studied. Six kinds preform were fabricated by using Saffil short fiber, HTZ short fiber, $Al_2O_3$ particle, and SiC particle. MMCs were fabricated by using squeeze casting methods. Various tests were conducted to show the effects of reinforcements type on mechanical properties of MMCs. Tensile and compressive properties of MMCs depend on short fiber, however wear properties depend on particle reinforcement. Generally, properties of fiber/particle hybrid MMCs were excellent than those of MMCs with short fiber.

  • PDF

Incremental Damage Mechanics of Particle or Short-Fiber Reinforced Composites Including Cracking Damage

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.192-202
    • /
    • 2002
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the cracked reinforcements lose load carrying capacity. This paper deals with an incremental damage theory of particle or short-fiber reinforced composites. The composite undergoing damage process contains intact and broken reinforcements in a matrix. To describe the load carrying capacity of cracked reinforcement, the average stress of cracked ellipsoidal inhomogeneity in an infinite body as proposed in the previous paper is introduced. An incremental constitutive relation on particle or short-fiber reinforced composites including progressive cracking of the reinforcements is developed based on Eshelby's (1957) equivalent inclusion method and Mori and Tanaka\`s (1973) mean field concept. Influence of the cracking damage on the stress-strain response of composites is demonstrated.

Damage Mechanics in Particle or short-Fiber Reinforced Composite (분산형 복합재료의 손상 메커니즘)

  • 조영태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.287-292
    • /
    • 1998
  • In particle or short-fiber reinforced composites. cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with the load carrying capacity of intact and broken ellipsoidal inhomogeneities embedded in an infinite body and a damage theory of particle or short-fiber reinforce composites. The average stress in the inhomogeneity represents its load carrying capacity. and the difference between the average stresses of the intact t and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori and Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites (섬유/입자 혼합금속복합재료의 인장거동)

  • 정성욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF

Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types (구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF