• Title/Summary/Keyword: Fiber nonlinearity

Search Result 88, Processing Time 0.022 seconds

Nonlinearity Detection and Compensation in Radio over Fiber Systems Using a Monitoring Channel

  • Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 2015
  • A radio over fiber (RoF) system is a kind of analog optical transmission system and considered as a strong candidate for the next-generation fronthaul link in the future mobile network. In RoF systems, nonlinearity compensation is essential to increase the link capacity. In this paper, we propose a nonlinearity detection and compensation scheme using a monitoring channel in RoF systems. A monitoring channel is added at the transmitter site and used for transmitting a reference signal in an RoF transmission. The nonlinearity in the RoF transmission is detected by comparing the received monitoring signal and the original reference signal at the receiver site. Finally, the nonlinearity is compensated at the receiver by giving the reverse function of the detected nonlinearity. Our results show that the proposed scheme can almost remove the error vector magnitude degradation induced by the nonlinearity in the RoF system.

Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows (섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측)

  • Suh, Young-W.;Kim, Sung-Joon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • In this study, the equivalent elastic modulus of flexible textile composites was predicted by nonlinear finite element analysis. The analysis was carried out considering the material nonlinearity of fiber tows and the geometrical nonlinearity during large deformation using commercial analysis software, ABAQUS. To account for the geometrical nonlinearity due to the large shear deformation of fiber tows, a user defined material algorithm was developed and inserted in ABAQUS. In results, nonlinear stress-strain curve for the flexible textile composites under uni-axial tension was predicted from which effective elastic modulus was obtained and compared to the test result. The effective elastic moduli were calculated for the various finite element models with different waviness ratio of fiber tow.

Optical Transmission Link with Balanced and Unbalanced Dispersion Distributions and Non-midway Optical Phase Conjugator

  • Chung, Jae-Pil;Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • We propose a dispersion-managed link with a non-midway optical phase conjugator (OPC), in which the residual dispersion per span (RDPS) of each fiber span is different for each transmission section before and after OPC. We numerically demonstrate the compensation for 960-Gb/s wavelength-division multiplexed (WDM) signals distorted by chromatic dispersion and Kerr nonlinearity of the fiber. We consider different cases for non-midway OPC, including six fiber spans - OPC - 14 fiber spans and 14 fiber spans - OPC - 6 fiber spans. The numerical results show that the compensation of the distorted 960 Gb/s WDM is more efficient when the OPC is placed after 6-th fiber span as compared to after the 14-th fiber span. Our simulation results also indicate that the compensation effect increases when the difference in net residual dispersion between both transmission sections is not large, but they are not the same. Under this condition, the larger the magnitude of the RDPSs of each fiber span, the greater the compensation.

Predictions of Nonlinear Behavior and Strength of Thick Composites with Fiber Waviness under Tensile/Compressive Load (굴곡진 보강섬유를 가진 두꺼운 복합재료의 인장/압축 비선형 거동 및 강도예측)

  • 유근수;전흥재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.819-822
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. Thick composites with fiber waviness have two kinds of nonliearity. One is material nonlinearity, and the other is geometrical nonliearity due to fiber waviness. There are only a few studies that have considered both material and geometrical nonlinearities. In this paper, a FEA model was proposed to predict nonlinear behavior and strength of thick composites with fiber waviness.

  • PDF

Study of Neuron Operation using Controlled Chaotic Instabilities in Brillouin-Active Fiber Based Neural Networks

  • Kim, Yong-K.;Huh, Do-Geun;Kim, Kwan-Woong;Yu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.546-549
    • /
    • 2006
  • In this paper the neuron operation based on Brillouin-active fiber in optical fiber is described. The inherent optical feedback by the backscattered stokes wave in optical fiber leads to instabilities in the form of optical chaos. Controlling of chaos induced transient instability in Brillouin-active fiber is implemented with Kerr nonlinearity having a non-instantaneous response in network systems. The controlling chaotic instabilities can lead to multistable periodic states; create optical logic 'on' or high level '1' or 'off', or low level '0'. It is theoretically possible to apply the multi-stability regimes as an optical memory device for encoding and decoding series and complex data transmission in optical systems.

PMD Effect on the Clock-based Optimum Dispersion Compensation Monitoring Technique

  • Kim, Sung-Man
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.112-115
    • /
    • 2009
  • We investigate the effect of polarization-mode dispersion (PMD) on the optimum dispersion compensation (ODC) monitoring and nonlinear penalty in optical transmission systems. We report that PMD may reduce the fiber nonlinearity. We also report that the monitoring error of the clock-based ODC monitoring technique decreases after the first-order PMD compensation. A simple explanation of this phenomenon is shown.

Nonlinear characteristics of photodetectors for optical fiber power measurements (광섬유 출력 측정용 광검출기의 비선형성 평가 연구)

  • 이덕희;류지욱;서정철
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.321-324
    • /
    • 2004
  • We have composed an experimental system using the superposition method to measure the nonlinearity of photodetectors for optical fiber power measurements. Also we have measured the nonlinearity of a high power detector and of a low power detector. The two detectors have shown good linearity within 0.01% and 0.02%, respectively, in the 50 ㏈ dynamic range. These detectors are used as reference detectors in optical fiber characteristics measurements.

Effective Periodic Poling in Optical Fibers

  • Kim, Jong-Bae;Ju, Jung-Jin;Kim, Min-Su;Seo, Hong-Seok
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.277-280
    • /
    • 2004
  • The distributions of electric field and induced second-order nonlinearity are analyzed in the periodic poling of optical fibers. A quasi-phase matching efficiency for the induced nonlinearity is calculated in terms of both the electrode separation distance between the applied voltage and generalized electrode width for the periodic poling. Our analysis of the quasi-phase matching efficiency implies that the conversion efficiency can be enhanced through adjusting the separation distance, and the electrode width can be maximized if the electrode width is optimized.

  • PDF

Seismic Analysis of a Bridge Using Fiber Element (섬유요소를 이용한 교량의 지진해석)

  • 조정래;곽임종;조창백;김병석;김영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.151-158
    • /
    • 2002
  • In the present design concept, the nonlinear behaviour of bridges is at lowed under large earthquake. The nonlinearity is, however, localized like pier, bearing, etc. Especially, pier columns are most important members for seismic performance. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element is used for modelling pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continous bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is analyzed. Second, Linear and nonlinear dynamic analysises using simplified model for longitudinal direction are carried out and the results are analyzed.

  • PDF