• Title/Summary/Keyword: Fiber exposure

Search Result 268, Processing Time 0.024 seconds

Effect of Mineral Admixture on Bond between Structural Synthetic Fiber and Latex Modified Cement Mortar under Sulfate Environments (황산염에 노출된 구조용 합성섬유와 라텍스 개질 시멘트 모르타르의 부착특성에 미치는 광물질 혼화재의 효과)

  • Kim, Dong-Hyun;Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.25-34
    • /
    • 2012
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to cement mortar by forming expansive hydration products due to the reaction between cement hydration products and acid and sulfate ions. In this study, the effect of fly ash and blast furnace slag on the bond performances of structural synthetic fiber in latex modified cement mortar under sulfate environments. Fly ash and blast furnace slag contents ranging from 0 % to 20 % are used in the mix proportions. The latex modified cement mortar specimens were immersed in fresh water, 8 % sodium sulfate ($Na_2SO_4$) solutions for 28 and 50 days, respectively. Pullout tests are conducted to measure the bond performance of structural synthetic fiber from latex modified cement mortar after sulfate environments exposure. Test results are found that the incorporation of fly ash and blast furnace slag can effectively enhance the PVA fiber-latex modified cement mortar interfacial bond properties (bond behavior, bond strength and interface toughness) after sulfate environments exposure. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results under sulfate environments.

Hetero-core Optical Fiber Exposure Sensor Module and Instrumentation Delay (헤테로코어 광파이버 노출형 센서모듈과 계측 지연현상)

  • Song, Young-Yong;Park, Eik-Tae;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.401-408
    • /
    • 2019
  • The objective of this study is to develop a new type of buried sensor module that can directly assess pre-stressed concrete by measuring strain using a hetero-core optical fiber sensor. In this regard, experiments were conducted to evaluate the performance of the sensor using an exposure sensor module. Based on the experimental results, when the values of the displacement control velocity were 0.12 mm/min and 1.80 mm/min, the corresponding delays in the measurement were 52.1 s and 2.6 s respectively, which indicated that the maximum delay between the two measurements was a factor of 19. Due to the measurement delay phenomena, the sensor module used in the experiments cannot be employed to check the real-time state of the structure. Thus, additional experiments were needed to develop a new sensor module that can measure the real-time state of the structure. To investigate the cause of the measurement delay phenomena, three experiments were conducted. It was confirmed that measurement delay is mainly attributed to frictional resistance. The measurement delay phenomena were not observed in the experiments using the friction-removed device.

Evaluation for Application of IOM Sampler for Agricultural Farmer's Inhalation Exposure to Kresoxim-methyl and Fenthion (농작업자의 Kresoxim-methyl과 fenthion에 대한 호흡노출량 측정을 위한 IOM 채집기의 효율성 평가)

  • Lee, Jiho;Kim, Eunhye;Lee, Jonghwa;Shin, Yongho;Maasfeld, Wolfgang;Choi, Hoon;Moon, Joon-Kwan;Lee, Hyeri;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.230-240
    • /
    • 2015
  • An IOM sampler equipped with glass fiber filter has been recently utilized instead of solid adsorbent, which was used to measure the inhalation exposure of agricultural operator to pesticides. The aim of this study is to validate the efficacy of an IOM sampler by measuring the trapping efficiency and breakthrough using kresoxim-methyl water-dispersible granule and fenthion emulsifiable concentrate. On LC-MS/ MS, minimum detection level was 12.5 pg and method limit of detection was 5.0 ng/mL. Good linearity ($R^2$ > 0.999) for matrix matched standards was obtained. Recoveries of pesticides from glass fiber filter were 102-109% (kresoxim-methyl) and 97-104% (fenthion) while those from XAD-2 resin were 94-98% (kresoxim methyl) and 93-100% (fenthion). Trapping efficiency test was performed with personal air pumps and IOM sampler (glass fiber filter) connected with solid adsorbent (XAD-2 resin) with two types of formulation (solid and liquid) which were diluted by standard rate and sprayed to IOM sampler. Those pesticides were trapped only in glass fiber filter without any breakthrough to solid adsorbent. After spiking of pesticides to glass fiber filter, breakthrough test was carried out with IOM sampler (glass fiber filter) which was connected with solid adsorbent. As a results, 87-101% of kresoxim-methyl and 96-105% of fenthion remained in spiked glass fiber filter, however, no pesticides were detected in second glass fiber filter and solid adsorbent. In conclusion, IOM sampler which equipped with glass fiber filter can be applied widely for pesticide inhalation exposure study since it has good trapping efficiency and adsorption capacity, regardless of the solid or liquid formulation.

Penetration resistance of steel fiber reinforced concrete containment structure to high velocity projectile

  • Teng, Tso-Liang;Chu, Yi-An;Shen, Bor-Cherng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.509-524
    • /
    • 2008
  • Containment structures not only are leak-tight barriers, but also may be subjected to impacts caused by tornado-generated projectiles, aircraft crashes or the fragments of missile warhead. This paper presents the results of an experimental study of the impact resistance of steel fiber-reinforced concrete against 45 g projectiles at velocity around 2500 m/s. An explosively formed projectile (EFP) was designed to generate an equivalent missile fragment. The formation and velocity of EFP are measured by flash x-ray. A switch made of double-layered thin copper sheets controlled the exposure time of each flash x-ray. The influence of the fiber volume fraction on the crater diameter of concrete slab and the residual velocity of the projectile were studied. The residual velocity of the projectile decreased as the fiber volume fractions increased. In this work, the residual velocity of the projectile was to 44% that of plain concrete when the fiber volume fraction exceeded 1.5%. Based on the present finding, steel fiber reinforced concrete with the fiber volume fraction exceeding 1.5% appear to be more efficient in protection against high velocity fragment impact.

Prediction of Long-Term Interlaminar Shear Strength of Carbon Fiber/Epoxy Composites Exposed to Environmental Factors (환경인자에 노출된 탄소섬유/에폭시 복합재의 장기 층간전단강도 예측)

  • Yoon, Sung Ho;Shi, Ya Long
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • The purpose of this study was to predict the long-term performance using the interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors. Interlaminar shear specimens, manufactured by the filament winding method, were exposed to the conditions of drying at $50^{\circ}C$, $70^{\circ}C$, and $100^{\circ}C$ and of immersion at $25^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ for up to 3000 hours, respectively. According to the results, the interlaminar shear strength did not vary significantly with the exposure time for the drying at $50^{\circ}C$ and $70^{\circ}C$, but it increased somewhat for the drying at $100^{\circ}C$ due to the post curing as the exposure time increased. The interlaminar shear strength of the specimens exposed to the immersion at $25^{\circ}C$ did not change significantly at the beginning of exposure, but it decreased with the exposure time and the degree of decrease increased as the environmental temperature increased. The linear regression equations for the environmental temperatures were obtained from the interlaminar shear strength of the specimens exposed to the immersion for up to 3000 hours. Using these linear regression equations, the interlaminar shear strength was estimated to be within 5.5% of the measured value at $25^{\circ}C$ and $50^{\circ}C$, and 2.3% of the measured value at $70^{\circ}C$. Therefore, the proposed performance prediction procedures can predict well the long-term interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors.

Weatherability and Reduction Factor of Geosynthetics under Outdoor Exposure Condition

  • Jeon, Han-Yong;Joo, Yong-Su;Lee, Su-Nam;An, Yang-Nim
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.106-106
    • /
    • 2003
  • 6 woven geotextiles for reinforcement were used to examine the effects of weatherability and reduction factor on the tensile properties. Decrease of tensile strength as the tool of these evaluations of woven geotextile was examined.

  • PDF

Durability Characteristics of Cellulose Fiber Reinforced Cement Composite (셀룰로우스 섬유 보강 시멘트 복합체의 내구성에 관한 연구)

  • 원종필;문제길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.1-6
    • /
    • 1996
  • Cellulose fiber reinforced cement composites manufactured by the slurry-dewatering process have found broad applications in thin cement products as replacement for asbestos cement. This paper focuses on the durability characteristics of these composites under different aging conditions. The effects of wetting-drying and freezing-thaw cycles, carbonation, and exposure to hot and humid environments on the structure and properties of cellulose fiber-cement composites were investigated. The predominant mechanisms of aging in the composites were identified through investigation of structure-property relationships. Measures to control these aging mechanisms were diversed and evaluated. Refined cellulose fiber-cement composites are shown to possess excellent durability characteristics under the effects of various aging processes.

  • PDF

Passive Temperature Compensation Package for Optical Long Period Fiber Gratings

  • Lee, Sang-Mae;Gu, Xijia
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.74-79
    • /
    • 1999
  • We present a simple design rule for a passive temperature-compensating optical package. We also present experimentally that a package fabricated by using the design rule compensates the temperature dependence of the resonant wavelength of an optical long period fiber grating by varying the strain inside the fiber, The package fabricated in this work consists of two pieced of brass tube, 10 mm long, and a piece of nylon rod, 45.4 mm long. It is shown that the package can compensate the temperature-induce wavelength shifts of the long period grating to a range of 6.8 pm/$^{\circ}C$, compared with 0..48 nm/$^{\circ}C$ for an uncompensated grating. The reduced strength of the fiber caused by exposure to ultraviolet limits the performance of the package to the range operating temperature form -3 $^{\circ}C$ to 7$0^{\circ}C$.

Water Uptake and Tensile Properties of Plasma Treated Abaca Fiber Reinforced Epoxy Composite

  • Paglicawan, Marissa A.;Basilia, Blessie A.;Kim, Byung Sun
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.165-169
    • /
    • 2013
  • This work presents the tensile properties and water uptake behavior of plasma treated abaca fibers reinforced epoxy composites. The composites were prepared by vacuum assisted resin transfer molding. The effects of treatment on tensile properties and sorption characteristics of abaca fiber composites in distilled water and salt solution at room temperature were investigated. The tensile strength of the composites increased with plasma treatment. With plasma treatment, an improvement of 92.9% was obtained in 2.5 min exposure time in plasma. This is attributed to high fiber-matrix compatibility. Less improvement on tensile properties of hybrid treatment of sodium hydroxide and plasma was obtained. However, both treatments reduced overall water uptake in distilled water and salt solution. Hydrophilicity of the fibers decreased upon plasma and sodium hydroxide treatment, which decreases water uptake.