• Title/Summary/Keyword: Fiber exposure

Search Result 268, Processing Time 0.025 seconds

Characterization and Evaluation of Worker s Exposure to Airborne Glass Fibers in Glass Wool Manufacturing Industry (유리섬유 단열재 제조업 근로자의 공기중 유리섬유 폭로 특성 및 평가 방법에 관한 연구)

  • 신용철;이광용;박천재;이나루;정동인;오세민
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.43-57
    • /
    • 1996
  • To characterize worker's exposure to glass fibers, to find the correlation between airborne total dust concentrations and fiber concentrations and to recommend an appropriate evaluation method for worker's exposure to fibrous dusts in glass wool industry, we carried out this study. Average respirable fiber levels at five factories were 0.013-0.056 f/cc, and fairly below the OSHA PEL, 1 f/cc. A factory showed the lowest airborne fiber level, 0.013 f/cc, which was different significantly from those of other factories of which average fiber concentration was 0.046 f/cc. The cutting and grinding operations of insulation products resulted in higher airborne fiber cocentrations than any other processes(p<0.05). To characterize airborne fiber dimension, fiber length and diamter were determined using phase contrast microscope. The geometric means of airborne fiber lengths were $42-105 \mu m$. One factory had airborne fibers whose length distribution(GM = $105 \mu m$) was different from those of other factories(GM = $42-50 \mu m$). The percentages of respirable fibers less thinner than 3 gm were 38.9-90.9% at four factories, and two factories of them had the higher percentages than others. The findings explain for variation of airborne fiber diameters between factories. On the other hand, between the processes were the difference of fiber-length distributions observed. The cutting and grinding operations showed shorter fiber-length distributions than the fiber forming one. However, fiber-diameter distributions or respirable fiber contents were similar in all processes. The airborne fiber concentrations and the dust concentrations had relatively weak correlation(r=0.25), thus number of fibers couldn't be expected reliably from dust amount. Fiber count is appropriate for assessing accurate exposures and health effects caused by fibrous dusts including glass fibers. Ministry of Labor have established occupational exposure limit to glass fibers as nuisiance dust, but should establish it on the basis of respirable fiber concentration to provide adequate protection for worker's health

  • PDF

Determination of Airborne Fiber Size and Concentration in RCF Manufacturing and Processing Factories (세라믹 섬유 제조 및 가공 공정에서 발생된 공기중 섬유의 농도 및 크기 분포)

  • 신용철
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2000
  • Various man-made mineral fibers(MMMF) including refractory ceramic fiber(RCF) have been used widely in industries as insulation materials. The effect of fibrous dust on human health depends on fiber size, concentration (exposure level), and durability in biological system. Therefore, these parameters should be determined to evaluate accurately the potential risk of fibers on human health. The purpose of this study was to characterize the size of airborne fiber and the workers' exposure to airborne fibers in refractory ceramic fiber manufacturing and processing factories. Airborne fibers were collected on 25-mm mixed cellulose ester membrane filters at personal breathing zones, and analyzed by A and B counting rules of the National Institute for Occupational Safety and Health(NIOSH) Method # 7400. The average ratios of the fiber density by B rule to the fiber density by A rule was 0.84. This result indicates that the proportion of respirable fibers (<3 ${\mu}{\textrm}{m}$ diameter) in air samples was high. The average diameter and length of airborne fibers were 1.05${\mu}{\textrm}{m}$ and 35${\mu}{\textrm}{m}$, respectively. The average fiber concentrations (GM) of all personal samples was 0.26f/cc, and the average concentration was highest at blanket cutting and packing processes. The fifty seven percent of personal air samples was exceeded the proposed American Conference of Governmental Industrial Hygienists(ACGIH) Threshold Limit Value(TLV), i.e. 0.2 f/cc. It was concluded that the RCF industrial workers had the higher potential health risk due to small fiber diameter, long fiber length, and high exposure level to the airborne fibers.

  • PDF

Local bond-slip behavior of fiber reinforced LWAC after exposure to elevated temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.437-445
    • /
    • 2020
  • The microstructure and mechanical properties of concrete will degrade significantly at high temperatures, thus affecting the bond strength between reinforcing steel and surrounding concrete in reinforced concrete members. In this study, the effect of individual and hybrid fiber on the local bond-slip behavior of lightweight aggregate concrete (LWAC) after exposure to elevated temperatures was experimentally investigated. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths of the pullout specimens were 4.2 times the bar diameter. The parameters investigated included concrete type (control group: ordinary LWAC; experimental group: fiber reinforced LWAC), concrete strength, fiber type, and targeted temperature. The test results showed that for medium-strength LWACs exposed to high temperatures, the use of only steel fibers did not significantly increase the residual bond strength. Moreover, the addition of individual and hybrid fiber had little effect on the residual bond strength of the high-strength LWAC after exposure to a temperature of 800℃.

Bond behavior of PP fiber-reinforced cinder concrete after fire exposure

  • Cai, Bin;Wu, Ansheng;Fu, Feng
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • To reduce the damage of concrete in fire, a new type of lightweight cinder aggregate concrete was developed due to the excellent fire resistance of cinder. To further enhance its fire resistance, Polypropylene (PP) Fibers which can enhance the fire resistance of concrete were also used in this type of concrete. However, the bond behavior of this new type of concrete after fire exposure is still unknown. To investigate its bond behavior, 185 specimens were heated up to 22, 200, 400, 600 or 800℃ for 2 h duration respectively, which is followed by subsequent compressive and tensile tests at room temperature. The concrete-rebar bond strength of C30 PP fiber-reinforced cinder concrete was subsequently investigated through pull-out tests after fire exposure. The microstructures of the PP fiber-reinforced cinder concrete and the status of the PP fibre at different temperature were inspected using an advanced scanning electron microscopy, aiming to understand the mechanism of the bonding deterioration under high temperature. The effects of rebar diameter and bond length on the bond strength of PP fiber-reinforced cinder concrete were investigated based on the test results. The bond-slip relation of PP fiber-reinforced cinder concrete after exposure at different temperature was derived based on the test results.

Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.477-485
    • /
    • 2018
  • This study aims to investigate the influence of individual and hybrid fiber on the local bond-slip behavior of medium and high strength concrete after exposure to different high temperatures. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths in the pullout specimens were three times the bar diameter. The parameters investigated include concrete type (control group: ordinary concrete; experimental group: fiber concrete), concrete strength, fiber type and targeted temperature. The test results showed that the ultimate bond stress in the local bond stress versus slip curve of the high strength fiber reinforced concrete was higher than that of the medium strength fiber reinforced concrete. In addition, the use of hybrid combinations of steel fiber and polypropylene fiber can enhance the residual bond strength ratio of high strength concrete.

Aging Characteristics of Carbon Fiber/Epoxy Composite Ring Specimen (탄소섬유/에폭시 복합재 링 시편의 노화 특성 평가)

  • Yoon, Sung-Ho;Oh, Jin-Oh
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.39-44
    • /
    • 2009
  • The effect of exposure times on the aging characteristics of carbon fiber/epoxy composite ring specimen was evaluated using an accelerating aging tester. Combined exposure conditions, such as temperature, moisture, and ultraviolet, were applied up to 3000 hours. Tensile properties and flexural properties including the effect of curvature were evaluated on the specimens subject to various exposure times through a material testing system. Their aging surfaces were observed through a scanning electron microscope. According to the results, tensile modulus was little affected by the exposure times. However, tensile strength, at the early stage of the exposure times, increased due to physical aging and curing reaction, but tensile strength slightly decreased due to degradation as the exposure times increased. The flexural modulus and flexural strength increased at the early stage of the exposure times, but slightly decreased as the exposure times increased. Aging surfaces of the specimens examined using the scanning electron microscope revealed a different morphology in various exposure times and provided useful information for identifying the degradation in mechanical properties of the composite subject to various exposure times.

Histopathological Changes of Subcutaneous Exposure to Glass Fibers in Rats (흰쥐에서 유리섬유의 피하삽입에 의한 경시적 병리조직학적 변화)

  • Lee, Min-Jae;Cho, Soo-Hun;Jang, Ja-June
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.1 s.56
    • /
    • pp.69-76
    • /
    • 1997
  • To exanime in vivo tissue reactions of glass fibers, we injected glass fibers to rats subcutaneously. We made fibers of average dimensions of approximately $2{\mu}m$ in diameter and $60{\mu}m$ in length. After instilation of glass fiber we sacrificed rats sequentially at 1, 3 and 6 months. At 1 month after injection of glass fibers, the exposure area turned to yellow color and formed well-demarcated round mass. The average size of the mass was $1\times0.3cm$. Grossly detectable mass was decreased in size at 6 months compared to 1 or 3 months. Microscopically, strong foreign body reaction to glass fibers, inflammation and fibrosis were observed until 6 months. Foreign body reaction was increased up to 3 months, but it was decreased after 6 months. In scanning electron microscope, there was many bundles of glass fibers around the inflammation area, but the size of glass fibers were gradually reduced from 1 month to 6 months. These results suggest that subcutaneous exposure of glass fiber can provoke strong tissue reaction including foreign body granulomas, inflammation and fibrosis. But glass fiber itself did not produce any neoplastic changes.

  • PDF

Airborne Asbestos Fiber Concentration in Korean Asbestos-Related Industry from 1994 to 2006 (1994년부터 2006년까지 한국 석면취급 사업장의 석면 노출농도)

  • Yi, Gwangyong;Shin, Yong Chul;Yoon, Chungsik;Park, Dooyong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.123-136
    • /
    • 2013
  • Objectives: This paper was prepapred to report airborne asbestos fiber concentrations in asbestos textile, brake-lining, commutator, and building materials manufacturing industries, and some other asbestos related industries in Korea from 1994 to 2006. Methods: Airborne asbestos data that have been sampled and analyzed in the above industries during 1994-2006 were collected. These data were reviewed to scrutinize the qualified data based on the records such as sampling and analyzed method and quality control procedures. All asbestos data were generated using the National Institute for Occupational Safety & Health (NIOSH) Method 7400. Results: Average concentration of asbestos fiber was 2.14 fibers/cc(0.02-15.6 fibers/cc) in the asbestos textile industry, 0.26 fibers/cc(0.01-1.01 fibers/cc) in the building-materials industry, 0.15 fibers/cc(0.01-0.93 fibers/cc) in the brake-lining manufacturing industry, and 0.14 fibers/cc(0.03-1.36 fibers/cc) in the commutator producing industry. For these industries, the percentage of samples of which asbestos fiber concentrations above the limit of exposure(0.1 fibers/cc) was 97.6% in the asbestos textile industry, 62.3% in the building-materials industry, 53.5% in the brake-lining manufacturing industry, and 34.3% in the commutator producing industry. Asbestos fiber concentration was below the limit of exposure in the gasket producing, petrochemistry, musical instrument producing industries, and the brake-lining exchange operations. Conclusions: Airborne asbestos fiber level in the asbestos textile, brake-lining producing, commutator and building-material producing industries was above the limit of exposure, but in the gasket producing, petrochemistry, musical instrument producing industries and the brake-lining exchange operations were below the limit of exposure.

Tensile Properties of Hybrid Fiber-Reinforced Reactive Powder Concrete After Exposure to Elevated Temperatures

  • Li, Haiyan;Liu, Gang
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • The paper presents a research project on the tensile properties of RPC mixed with both steel and polypropylene fibers after exposure to $20-900^{\circ}C$. The direct and the indirect tensile strength (in bending) were measured through tensile experiment on dog-bone specimens and bending experiment on $40{\times}40{\times}160mm$ prisms. RPC microstructure was analyzed using scanning electron microscope. The results indicate that, steel fibers can significantly improve the tensile performance of hybrid fiber-reinforced RPC, whereas polypropylene fibers have no obvious effect on the tensile performance. With increasing temperature, the flexural and axial tensile strength of hybrid fiber-reinforced RPC substantially decrease linearly, which attributes to the deteriorating microstructure. Based on the experimental results, equations are established to express the decay of the flexural and tensile strength with increasing temperature.

Review of a Case of Chronic Obstructive Pulmonary Disease in Workers Exposed to Synthetic Fibers

  • Hyeon-cheol Oh;Chae-seong Lim;Jung-won Kim;Eun-seok Kim;Ji-eun Lee;Sang-cheol Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.273-279
    • /
    • 2023
  • Objectives: Objectives of this study were: 1) to introduce industrial situation and health hazards of synthetic fiber, 2) to review a case of chronic obstructive pulmonary disease in a worker exposed to synthetic fiber reported to the Korea Occupational Disease Surveillance Center, and 3) to suggest supplementary measures for the occupational health system for workers exposed to synthetic fibers. Methods: Respiratory exposure, health hazards, and exposure standards for synthetic fiber dust in Korea and other countries were reviewed. In addition, a case of chronic obstructive pulmonary disease due to exposure to nylon dust reported to the Korea Occupational Disease Surveillance Center was reviewed and summarized. Results: The worker was a 53-year-old non-smoking male who had been involved in the nylon weaving process for 26 years. He had shortness of breath from three years ago. He was diagnosed with chronic obstructive pulmonary disease. PM1.0, PM2.5, and PM10 were measured at 26.6 ㎍/m3, 48.2 ㎍/m3, and 91.7 ㎍/m3, respectively. Fiber components estimated as nylon fiber were detected in the microscopic examination of a solid sample. Conclusions: For workers exposed to synthetic fiber dust, special health examinations of the respiratory system, regular work environment measurement, and work environment management through workplace health management should be performed. It is necessary to research on health effects of synthetic fibers.