• Title/Summary/Keyword: Fiber composite material

Search Result 1,117, Processing Time 0.026 seconds

The Characteristics of Flexure Strength and Rigidity in Light-weight CFRP Members (경량화 CFRP 부재의 휨 강도와 강성 특성)

  • Yang, In-Young;Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.95-99
    • /
    • 2008
  • Applications of composite materials in various engineering fields have been extended significantly. For being useful composite materials, we could modify the rigidity and strength characteristics of composite material according to structures and material direction. In this study, CFRP, which has been widely used in space leisure and general structural applications due to the weight, elasticity coefficient, high fatigue strength and lower thermal transformation ect, was selected. As the CFRP is an anisotropic material whose mechanical properties change with its stacking sequence or angle, special attention was given to the effects of the fiber orientation angle on the bending characteristics of CFRP fiat and CFEP square members. It's different on the each result of strength and rigidity of CFRP flat and CFRP square members.

A Study on Material Properties of Composite Panel for Impact·Blast Resistance (방호·방폭 보강용 복합패널의 재료특성에 관한 연구)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.373-380
    • /
    • 2016
  • In order to develop composite fiber panels that can maximize the protection and blast resistance of the existing structures by improving lightweight, high-strength and fireproof performances of the single layer material of precast panels, the basic properties of the inner and outer covers that are mixed with aramid fibers (AF) and polyester fibers (PF) were evaluated in this study. Also, a basic study was performed on the performance of composite fiber panels by testing Nano-sized composite materials that are lightweight and excellent in fire resistance for their compressive strength, bending strength and tensile strength.

Effective Thermal Conductivities of CE3327 Plain-weave Fabric Composite (CF3327 평직 복합재료의 열전도도)

  • 구남서;문영규;우경식
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.27-34
    • /
    • 2002
  • The purpose of this study is to measure and predict the thermal conductivity of CF3327 plain-weave fabric composite made by Hankuk Fiber, Co. An experiment apparatus based on the comparative method has been made to measure the thermal conductivities of the composite material. Its accuracy was proved by measuring the thermal conductivity of graphite which is well-known. Micro-mechanical approaches are useful to assess the effect of parameters such as fiber and matrix material properties, fiber volume fraction and fabric geometric parameters on the effective material properties of composites. In this study, prediction was based on the concept of three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit ceil model that characterized the periodically repeated pattern of a plain weave. The numerical results were compared with experimental one and good agreement was observed. Also, the effects of fiber volume fraction on the thermal conductivity of several composites has been investigated.

Structural Test Analysis Study for Manufacturing of Flax Fiber Composite Blades for 30kW Wind Turbines (30kW 풍력터빈용 아마섬유 복합재 블레이드 제조를 위한 구조 시험 분석 연구)

  • Hye-Jin Shin;Ji-Hyun Lee;Sung-Young Moon;Jounghwan Lee
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.32-36
    • /
    • 2023
  • Recently, as global environmental issues for sustainable development, such as carbon neutrality, have emerged, disposal methods of glass fiber composites, a material of existing wind turbines, have become a problem. To solve this problem, in this study, 30kW wind turbine blades were manufactured using flax fiber-based composites, which are eco-friendly natural fiber composites that can replace existing glass fiber composites, and their suitability was evaluated. First, mechanical strength tests were conducted to verify the feasibility of using eco-friendly natural flax fiber composites as a wind turbine blade material, and as a result, better strength were confirmed compared to previous studies on the properties of flax fiber composites. In addition, the suitability was confirmed through a static strength performance evaluation test to measure the static strength of the flax fiber composite blade using the manufactured 30kW class flax fiber composite blade.

Material Property Characterization Method and Experimental Measurement of the Effective Thermal Conductivities of Woven Fabric Composite Materials (직물 복합재료의 물성치 특성화 기법 및 실험적 계측)

  • Moon, Young-Kyu;Goo, Nam-Seo;Kim, Cheol;Woo, Kyung-Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.64-69
    • /
    • 2001
  • In general, laminate effective orthotropic thermal conductivities are dependent on fiber and matrix material properties, fiber volume fraction and fabric geometric parameters. This paper deals with the predicting method of the transverse and the in-plane thermal conductivities of plain weave fabric composites based on the three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit cell model that characterizes the periodically repeated pattern of plain weave. Also, an experiment apparatus is setup to measure the thermal conductivities of composite material. The numerical and experimental results of carbon/epoxy plain weave are compared.

  • PDF

A Study on CAE for the Design of the Seat Frame of Fiber-reinforced Composite Material (첨단섬유강화 복합재료 시트프레임 설계를 위한 CAE 연구)

  • 허용정;이순홍;최금호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.933-937
    • /
    • 1995
  • The design of injection molded prlymeric parts has been done empirically, since it requires profound knowledge about the moldability and causal effects on the properties of the parts. This study shows CAE approach for the design of the seat frame of fiber-reinforced composite material in order to realize the concept os rationsl design for the productivity and quality of mold making. The knowledge-based CAE system is constructed by adding the knowledge-basw module for the design evaluation and appropriate CAE programs for mold design analysis in order to provied designers, at the initial design stage, with comprehensive process knowledge for the performance analysis and the design evaluation. A knowledge-based CAE system is a new tool which enables the concurrent design with integrated and balanced design decisions at the initial design stage of injection molding.

  • PDF

Characterization of Fiber Pull-out in Orthogonal Cutting of Glass fiber Reinforced Plastics

  • Park, Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.113-117
    • /
    • 2003
  • The reliability of machined fiber reinforced composites (FRC) in high strength applications and the safety in using these components are often critically dependent upon the quality of surface produced by machining since the surface layer may drastically affect the strength and chemical resistance of the material [1,2,3,4]. Current study will discuss the characterization of fiber pull-out in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the fiber pull-out and the AR coefficients is examined first and effects of fiber orientation, cutting parameters and tool geometry on the fiber pull-out are also discussed.

  • PDF

Implant Restorations Using Fiber Reinforced Framework (Fiber Reinforced Framework를 이용한 Implant 수복증례)

  • Song, Ho-Yong;Lee, Yang-Jin;Jo, Ri-Ra
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.10 no.2
    • /
    • pp.21-30
    • /
    • 2001
  • Fiber reinforced materials have favorable mechanical properties. Moreover, the strength to weight ratios of this material is superior to those of most alloys. Comparing to the metals, it showed many other advantages as well, including non-corrosiveness, translucency and easy repair characteristic. Since, it has the potential for the chair-side and laboratory fabrication, it is not surprising that fiber reinforced composites offer the potential for use in various applications in dentistry. To make the well-fitted restorations, Fiber reinforced composite (FRC) has been suggested as an alternative framework material for the implant supported fixed prosthesis. Two fixed partial denture fabrication procedures were tried. Vectris fiber was pressed to the EsthetiCone gold cylinder on the implant positioned cast. And then, Targis were added on it. In the other method, we used the customized component using UCLA abutment. The beads for retaining the Vectris fiber were added on the abutment. If careful laboratory and clinical techniques were done, these two techniques would fulfill the demands of the esthetics and strength.

  • PDF

Convergence Study on Composite Material of Unidirectional CFRP and SM 45C Sandwich Type that Differs in Stacking Angle (적층각도가 다른 단방향 CFRP와 SM45C샌드위치형 복합재료에 관한 융합적 연구)

  • Park, Jae-Woong;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.231-236
    • /
    • 2017
  • In this study, the inhomogeneous material composed of CFRP(carbon fiber reinforced plastic) and structural metal of SM45C is used for the light material. The finite element analysis on the basis of compact tension test was carried out by using the composite material for sandwich type bonded with the unidirectional CFRP that differs in fiber stacking angle at both sides with the core of SM 45C. CT test is the representative method to confirm the fracture behaviour due to crack in material under the load. The effect on crack and hole must be investigated in order to apply inhomogeneous material to mechanical structure. As the result of this study, the fracture behaviour by CT test of the composite material for sandwich was studied by simulation analysis. The sandwich composite of unidirectional CFRP with the stacking angle of [0/60/-60/0] has the superior strength and the maximum equivalent stress of about 182GPa.Also, the esthetic sense can be shown as the designed factor of shape with composite material is grafted onto the convergence technique.

Characterization of Metal-FRP Laminated Composites for Strengthening of Structures: Part-I Tensile Behavior (사회기반시설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-I 인장 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.54-63
    • /
    • 2011
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the tensile test with various experimental variables including the number, the angle and the combination of FRP laminates. From the test results, both aluminum and steel-FRP laminate composite material showed increased fracture toughness. However, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions. In general, steel-FRP laminate composite showed better tensile performance in regards to the seismic retrofit purposes.