• Title/Summary/Keyword: Fiber addition ratio

Search Result 340, Processing Time 0.031 seconds

Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume fraction (강섬유 계수 및 혼입률을 고려한 SFRC의 강도 및 변형 특성)

  • Lee Hyun-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.759-766
    • /
    • 2004
  • The addition of steel fiber with concrete significantly improves the engineering properties of structural members, notably shear strength. The purpose of this study is to determine the steel fiber shape, aspect ratio and volume fraction ratio in a point of practical usage as structural members. Steel fiber factor and volume fraction are also considered to verify the strengthening effect in member level. From the reviewing of previous researches and analyzing of consecutive material test results, the optimum shape and length of steel fiber, which can have a good strengthening effects were defined as a hooked end type and larger than 1.5 times of maximum gravel size. Analyzing the test results of strength and deformation capacity, aspect ratio 75 and volume fraction $1.5\%$ can be having a maximum strengthening effect of steel fiber. Also steel fiber factor, tensile splitting strength, and flexural strength are found as key parameter in shear strengthening effect in member level.

Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios (코코넛 섬유 혼입률에 따른 RHA 및 OPC 콘크리트의 역학적 특성)

  • Lee, Min-Hi;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • Currently, Eco-friendly construction materials are widely utilized for reducing $CO_2$ emission in construction. Furthermore various engineering fibers are also added for improving a brittle behavior in concrete. In the paper, concrete specimens with 10% and 20% replacement ratio with RHA (Rice Husk Ash) are prepared, and engineering behaviors in RHA and OPC concrete are evaluated with different addition of coconut fiber from 0.125~0.375% of volume ratio. Several basic tests including compressive strength, tensile strength, flexural strength, impact resistance, and bond strength are performed, and crack width and deflections are also measured in flexural test. RHA is evaluated to be very effective in strength development and 0.125% of fiber addition leads significant improvement in tensile strength, ductility, and crack resistance. RHA and coconut fiber are effective construction material both for reutilization of limited resources and performance improvement in normal concrete.

Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.477-485
    • /
    • 2018
  • This study aims to investigate the influence of individual and hybrid fiber on the local bond-slip behavior of medium and high strength concrete after exposure to different high temperatures. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths in the pullout specimens were three times the bar diameter. The parameters investigated include concrete type (control group: ordinary concrete; experimental group: fiber concrete), concrete strength, fiber type and targeted temperature. The test results showed that the ultimate bond stress in the local bond stress versus slip curve of the high strength fiber reinforced concrete was higher than that of the medium strength fiber reinforced concrete. In addition, the use of hybrid combinations of steel fiber and polypropylene fiber can enhance the residual bond strength ratio of high strength concrete.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Concrete Slab (강섬유보강 철근콘크리트 슬래브의 휨 거동에 관한 실험적 연구)

  • 박홍용;문정규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.861-866
    • /
    • 2000
  • This experimental were investigated on the influence of steel fiber reinforcement on flexural behavior characteristics of slabs with various steel fiber contents $V_f$ and aspect ratio($\ell $/$\phi$). Deflection, crack widths, and strains of steel bar were measured with every load step. In the results of this experimental, the addition of steel fibers to conventionally reinforced concrete slab increased the ultimate load, reduced the creak width, the average crack spacing, and deflection.

Quantitative Damage Evaluation of Fiber-Reinforced Cement Composite Using Acoustic Emission Technique (음향방출 기법을 이용한 섬유보강 시멘트 복합체의 정량적 손상평가)

  • Lee, Young-Oh;Yun, Yeo-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.457-464
    • /
    • 2009
  • Fiber is an important ingredient in fiber-reinforced cement composite (FRCC) which can control fracture of cement composite by bridging action. In compliance with the action of the fiber and the aggregate size, it also showed a different failure mechanism. For practical application, it is needed to investigate the fracture behavior of the FRCC and to understand the micro-mechanism of cement matrix with reinforcing fiber. In order to evaluate a characteristics of fracture process in the FRCC, acoustic emission (AE) technique was used for the analysis and evaluation of FRCC damage by acoustic emission under flexural and cyclic compressive loadings. The AE signals were monitored by AMSY4 AE instrument during the entire loading period. The specimens are reinforced with 0, 1.0, 1.5 and 2.0% (by volume) Polyvinyl alcohol (PVA) fiber. The test results showed that the damage progress of the FRCC was characteristic for the fiber replacement ratio. As a result of analyzing the felicity ratio (FR) values, it is shown that this values can be used for evaluating the degree of FRCC damage. On the whole the felicity ratio values of FRCC are shown between 0.4 and 1.1. And, the AE kaiser effect was shown in the all FRCC specimen. In addition, the damage behavior and the microscopic fracture process of the FRCC are evaluated using the AE parameters, such as calm ratio, b-value and felicity ratio. The purpose of this reserch was to advance the state of knowledge regarding the applicability of acoustic emission as an evaluation method for FRCC.

Enhanced Electromagnetic Properties of Nickel Nanoparticles Dispersed Carbon Fiber via Electron Beam Irradiation (전자선 안정화에 의한 니켈 나노 입자가 분산된 탄소섬유의 전자기적 특성 향상)

  • Lee, Yeong Ju;Kim, Hyun Bin;Lee, Seung Jun;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat-treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

Spalling Properties of High Performance Concrete Designed with the Various Types of Coarse Aggregate (굵은골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Heo, Young-Sun;Park, Yong-Kyu;Jin, Hu-Lin;Jee, Suk-Won;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.95-98
    • /
    • 2006
  • This study investigates spalling properties of high performance concrete, 60MPa clan, made with the various types of coarse aggregate and adding ratio of polypropylene(PP) fiber. As experimental parameters, totally sixteen specimens of ${\phi}100{\times}200mm$ in size are prepared: one specimen for control without fiber, ten specimens with different coarse aggregate types, along with 0.05, 0.1, 0.15 percent of PP fiber in each. 1 hour fire test is conducted and then spalling appearance, spalling degree and residual compressive strength are examined. In addition, sit specimens made with two types of coarse aggregate site, along with same adding ratio of fiber are supplementally done, and only spalling properties is examined. Test results showed that control concrete and most specimens containing 0.05% of PP fiber exhibited 4 to 3 level of spalling degree, resulting severe explosive spalling, except for the specimen using basalt aggregate(Bc) showing 2 to 3 level of that. Especially, the Bc specimen containing 0.1% of the fiber exhibited that residual compressive strength value was 32%, which is 10% higher than other specimens using limestone or granite. Spalling resistance performance was also effective as aggregate size increase.

  • PDF

Estimation of ultimate torque capacity of the SFRC beams using ANN

  • Engin, Serkan;Ozturk, Onur;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.939-956
    • /
    • 2015
  • In this study, in order to propose an efficient model to predict the torque capacity of steel fiber reinforced concrete (SFRC) beams, the existing experimental data related to torsional response of beams is reviewed. It is observed that existing data neglects the effects of some parameters on the variation of torque capacity. Thus, an experimental research was also conducted to obtain the effects of neglected parameters. In the experimental study, a total of seventeen SFRC beams are tested against torsion. The parameters considered in the experiments are concrete compressive strength, steel fiber aspect ratio, volumetric ratio of steel fibers and longitudinal reinforcement ratio. The effect of each parameter is discussed in terms of torque versus unit angle of twist graphs. The data obtained from this experimental research is also combined with the data got from previous studies and employed in artificial neural network (ANN) analysis to estimate the ultimate torque capacity of SFRC beams. In addition to parameters considered in the experiments, aspect ratio of beam cross-section, yield strengths of both transverse and longitudinal reinforcements, and transverse reinforcement ratio are also defined as parameters in ANN analysis due to their significant effects observed in previous studies. Assessment of the accuracy of ANN analysis in estimating the ultimate torque capacity of SFRC beams is performed by comparing the analytical and experimental results. Comparisons are conducted in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of efficiency ($E_f$). The results of this study revealed that addition of steel fibers increases the ultimate torque capacity of reinforced concrete beams. It is also found that ANN is a powerful method and a feasible tool to estimate ultimate torque capacity of both normal and high strength concrete beams within the range of input parameters considered.