• Title/Summary/Keyword: Fiber Strength

Search Result 4,101, Processing Time 0.032 seconds

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

Spalling Reduction Methods of Ultra High-Strength Reinforced Concrete Columns (초고강도 콘크리트 기둥의 폭렬저감방안에 관한 실험적 연구)

  • Shin, Sung-Woo;Yoo, Suk-Hyeong;Kim, In-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.171-178
    • /
    • 2006
  • It was presented that the spalling of high strength concrete exposed to high temperature could be reduced by using polypropylene fiber. However, as the concrete strength increase, the demanded quantity of PP fiber increase and this results in the loss of workability of ultra high strength concrete. The silica fume which is essentially mixed in ultra high strength concrete decrease the permeability of concrete, and this will increase the degree of spalling. In this study the effect of silica fume on the spalling of ultra high strength concrete and the fire resisting efficiency of PP fiber and poly vinyl alchol, instead of PP fiber, for the security of workability were experimentally examined.

Spalling Properties of High Strength Concrete Mixed with Various Mineral Admixtures Subjected to Fire

  • Han, Cheon-Goo;Han, Min-Cheol;Heo, Young-Sun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This study investigates the spalling properties of high strength concrete designed with various types of mineral admixture and diverse content ratios of polypropylene (PP) fiber. Experimental factors considered in series I are four pozzolan types of mineral admixture and series II consists of three shrinkage reducing types of mineral admixture. PP fiber was added 0.05, 0.10 and 0.15vol. % in each mixture of series I and series II, so that totally 27 specimens including control concretes in each series were prepared. Test results showed that the increase of fiber content decreased the slump flow of fresh concrete and increased or decreased the air content depending on the declining ratio of slump flow. For the properties of compressive strength, all specimens were indicated at around 50 MPa, which is high strength range; especially all specimens in series II were 60 MPa. Fire test was conducted in standard heating curve of ISO 834 with ${\phi}100{\times}200\;mm$ size of cylinder moulds for 1 hour. The specimens incorporating silica fume exhibited severe spalling and most specimens without the silica fume could be protected from the spalling occurrence in only 0.05vol % of PP fiber content. This fire test results demonstrated that the spalling occurrence in high strength concrete was not only affected by concrete strength related to the porosity of microstructure but also, even more influenced by micro pore structure induced by the mineral admixtures.

Strength Properties of the Fiber Mixed High Strength Concrete at Elevated Temperature (고온 가열에 따른 섬유혼입 고강도 콘크리트의 강도특성 변화)

  • Kim, Sang-Shik;Kim, Seong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.53-58
    • /
    • 2008
  • This study is to investigate experimentally residual strength properties of the high strength concrete containing the hybrid of nylon and polypropylene fiber at elevated temperature. Test results showed that specimens heated up to $300^{\circ}C$ exhibited similar strength properties to the one at room temperature. This result is significantly different from previous studies. but specimens heated over $400^{\circ}C$ showed dramatic decrease indicating similar tendency. For the residual strength properties, one at $300^{\circ}C$ even increased 10%, which is also different from previous studies, but it significantly decreased in $400^{\circ}C$ as widely expected. Melted pores by organic fibers in concrete specimens was observed with FE-SEM. For the density of concrete in elevated temperature, internal system in $200^{\circ}C$ had even denser than in $20^{\circ}C$, but was collapsed in $400^{\circ}C$.

Influence of steel fiber and reinforcing details on the ultimate bearing strength of the post-tensioning anchorage zone

  • Kim, Jin-Kook;Yang, Jun-Mo;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.867-883
    • /
    • 2016
  • In this paper, the effects of steel-fiber and rebar reinforcements on the ultimate bearing strength of the local anchorage zone were investigated based on experiments and comparisons between test results and design-equation predictions (AASHTO 2012, NCHRP 1994). Eighteen specimens were fabricated using the same anchorage device, which is one of the conventional anchorage devices, and two transverse ribs were used to secure an additional bearing area for a compact anchorage-zone design. Eight of the specimens were reinforced with only steel fiber and are of two concrete strengths, while six were reinforced with only rebars for two concrete strengths. The other four specimens were reinforced with both rebars and steel fiber for one concrete strength. The test and the comparisons between the design-equation predictions and the test results showed that the ultimate bearing strength and the section efficiency are highly affected by the reinforcement details and the concrete strength; moreover, the NCHRP equation can be conservatively applied to various local anchorage zones for the prediction of the ultimate bearing strength, whereby conditions such as the consideration of the rib area and the calibration factor are changed.

Enhancement of Compressive and Shear Strength for Concrete Masonry Prisms with Steel Fiber-Reinforced Mortar Overlay (강섬유보강 모르타르 바름에 의한 콘크리트 조적 프리즘의 압축 및 사인장 강도 증진 효과)

  • Yu, Ji-Hoon;Myeong, Seong-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • Concrete masonry prisms are strengthened with steel fiber-reinforced mortar (SFRM) overlay and tested for compressive and diagonal tension strength. Masonry prisms are produced in poor condition considering standard workmanship for masonry buildings in Korea. Amorphous steel fibers are adopted for SFRM, and appropriate mixing ratios of SFRM are derived considering constructability and strength. Masonry prisms are strengthened with different fiber volume ratios, while numerous strengthened faces and additional reinforcing meshes are produced for compression and diagonal tension tests. Compression and diagonal tension strength are increased by up to 122% and 856%, respectively, and the enhancement effect for diagonal tension strength was superior compared to compression strength. Finally, the test results and strength prediction equations based on existing literature and regression analysis are compared.

Analysis of the Strength Characteristics of Hair Fiber Reinforced Caly Soil (헤어섬유로 보강된 점토흙의 강도 특성 분석)

  • Son, Moorak;Song, Hwasun;Lee, Jaeyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.15-25
    • /
    • 2015
  • This study aimed at the strength increase of the soft ground and analyzed the strength characteristics of clay soil reinforced with hair fiber which is environmentally friendly. The study varied the length of hair fiber, the amount of hair fiber, the amount of cement, and curing days to investigate both the compressive and tensile strengths and the stress-strain relationship of hair fiber mixed clay soils. The test results indicated that both the compressvie and tensile strengths increased with hair fiber mixed, especially in the tensile strength. In addition, the hair fiber mixed clay soil allowed larger displacement to failure. Based on the test results, it is thought that the environmentally friendly hair fiber could be utilized practically to increase the clay strength in the future.

Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis (건조수축 해석을 통한 종이의 벌크 및 강직성 향상)

  • Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.

Effect of fiber volume fraction on the tensile softening behavior of Ultra High Strength Steel Fiber-Reinforced Concrete (섬유혼입률이 초고강도 강섬유 보강 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Lee, Si-Young;Park, Gun;Hong, Sung-Wook;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.421-424
    • /
    • 2008
  • Ultra high strength steel fiber-reinforced concrete is characterized with high tensile strength and ductility. This paper revealed the influence of fiber volume fraction on the tensile softening behaviour of ultra high strength steel fiber-reinforced concrete and developed tensile softening model to predict the deformation capacity by finite element method analysis with experimental results. The initial stiffness of ultra high strength steel fiber-reinforced concrete was constant irrespective of fiber volume fraction. The increase of fiber volume fraction improved the flexural tensile strength and caused more brittle softening behaviour. Finite element method analysis proposed by Uchida et al. was introduced to obtain the tensile softening curve from three point notched beam test results and we proposed the tensile softening model as a function of fiber volume fraction and critical crack width.

  • PDF

A Study on Fire Performance of HPC Column with Fiber Cocktail in KS Fire Curve under Loading Condition (표준화재 재하조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 화재거동에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.377-380
    • /
    • 2008
  • The material and mechanical properties in the high temperature area of 40 to 100 MPa high strength concrete structural member was identified based on mixing of fiber cocktail and the structural element fire behavior simulation through the finite element analysis method (ABAQUS) was interpreted. The results are as follows. First, it was interpreted that the test specimen with concrete fiber cocktail mixed was more controllable in the maximum shrinkage than the one with concrete fiber cocktail not mixed the controllable range was about 25% to 55%. This means that shrinkage is controllable through mixing of fiber cocktail for the high strength concrete columns. Second, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance based design of fire resistant construction.

  • PDF