• Title/Summary/Keyword: Fiber Stacking Angle

Search Result 71, Processing Time 0.024 seconds

항공기용 하이브리드 복합재료의 섬유배향각에 따른 피로균열전파와 층간분리 거동

  • 김태수;송삼홍;김철웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.76-76
    • /
    • 2004
  • 하이브리드 복합재료 중에서 적충형태의 Al/GFRP는 단일재 알루미늄에 비해 피로특성, 비강도, 비강성 등이 매우 우수하여 Fig. 1과 같이 항공기 주익 구조에 주로 적용된다. 그러나 이러한 Al/GFRP 적층재 역시 장시간에 걸쳐 비행하중을 받게 되면 다양한 형태의 파손이 발생할 수 있다. 이 중 알루미늄층과 섬유층 사이에서 발생하는 층간분리는 Al/GFRP 적층재의 대표적인 피로파손 형태이며, 현재 이러한 파손은 다 방면으로 연구되고 있다.(중략)

  • PDF

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material (압전재료를 이용한 위성체 구조물의 열 진동 제어)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

Compressive Characteristics of Composites According to the Micro-structure and Stacking angle (직조구조차이와 적층각의 변화에 따른 섬유강화복합재료의 압축특성)

  • Yoo, Seong-Hwan;Park, Seok-Won;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, static compressive test and compression-compression fatigue test of carbon/epoxy composites which have different micro-structures were carried out with respect to the bias angle. In order to find out the effect of the micro-structure of the fabric composite on compressive characteristics the specimens made of UD carbon/epoxy composite comprising the same fiber and matrix system as the fabric composite were also prepared. The compressive strength and modulus were measured and these values were used to develop a semi-empirical formula for predicting compressive strength of the fabric composite with bias angles. The fatigue behavior of the fabric composite with respect to the bias angle variation was also investigated.

Investigation Into the Drilling Characteristics of Carbon Fiber Reinforced Plastic (CFRP) with Variation of the Stacking Sequence Angle (탄소섬유강화플라스틱(CFRP)의 적층 배향각에 따른 드릴링 가공 특성 고찰)

  • Kim, Tae-Young;Kim, Ho-Seok;Shin, Hyung-Gon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.250-258
    • /
    • 2014
  • Due to recent industrial growth and development, there has been a high demand for light and highly durable materials. Therefore, a variety of new materials has been developed. These new materials include carbon fiber reinforced plastic (CFRP or CRP), which is a wear-, fatigue-, heat-, and corrosion-resistant material. Because of its advantageous properties, CFRP is widely used in diverse fields including sporting goods, electronic parts, and medical supplies, as well as aerospace, automobile, and ship materials. However, this new material has several problems, such as delamination around the inlet and outlet holes at drilling, fiber separation, and tearing on the drilled surface. Moreover, drill chips having a fine particulate shape are harmful to the work environment and engineers' health. In fact, they deeply penetrate into machine tools, causing the reduction of lifespan and performance degradation. In this study, CFRP woven and unidirectional prepregs were formed at $45^{\circ}$ and $90^{\circ}$, respectively, in terms of orientation angle. Using a high-speed steel drill and a TiAIN-coated drill, the two materials were tested in three categories: cutting force with respect to RPM and feed speed; shape changes around the input and outlet holes; and the shape of drill chips.

The Effects of Curvature Change on Penetration Characteristics of CFRP Laminate shell (곡률변화가 CFRP 적층쉘의 관통특성에 미치는 영향)

  • 조영재;이상훈;김영남;양인영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.274-279
    • /
    • 2004
  • Currently, carbon-fiber reinforced plastics(CFRP) are widely used in both space and civil aircraft due to their superior stiffness and strength to weight ratios compared to conventional metallic materials. This paper is to study the effects of curvature and stacking sequence on the penetration characteristics of composite laminated shell. And were performed to investigate the penetration characteristics of composite laminated shells by the oblique impact. They are stacked to [0$_3$/90$_3$]s, [90$_3$/0$_3$]s and [0$_2$/90$_3$/0]s, [90$_2$/0$_3$/90]s their interlaminar number two and fore. They are manufactured to varied curvature radius (R=100, 150, 200mm and $\infty$). When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistics-screen sensor located a known distance apart. In general, the critical penetration energy interface decrease and slope angle on the impact surface increased. [0$_3$/90$_3$]s and [0$_2$/90$_3$]s specimens higher than [90$_3$/0$_3$]s and [90$_2$/0$_3$/90]s specimens.

  • PDF

Dynamic Characteristics of CFRP Structure Member According to Change the Stacking Angle and Shape (적층각 및 형상 변화에 따른 CFRP 구조부재의 동적 특성)

  • Yeo, In-Goo;Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • Carbon fiber reinforced plastic (CFRP) has many desirable qualities, including being lightweight and very strong. These characteristics have led to its use in applications ranging from small consumer products to vehicles. Circular and square CFRP members were fabricated using 8ply unidirectional prepreg sheets stacked at different angles ($[+15^{\circ}/-15^{\circ}]_4$, $[+45^{\circ}/-45^{\circ}]_4$ and $[90]_8$, where $0^{\circ}$ coincides with the axis of the member). Based on the collapse characteristics of a CFRP circular member, the collapse characteristics and energy absorption capability were analyzed. Impact collapse tests were carried out for each section member. In this study, the impact energies at crossheads speeds of 5.52 m/s, 5.14 m/s and 4.57 m/s were 611.52 J, 529.2 J and 419.44 J (circular member) 2.16 m/s, 1.85 m/s and 1.67 m/s are 372.4 J, 274.4 J and 223.44 J (square member). The purpose is to experimentally examine the absorption behavior and evaluation the strength in relation to changes in the stacking configuration when the CFRP circular members with different stacking configurations were exposed to various impact velocities. In addition, the dynamic characteristics were considered.

Flexural Analysis of Laminated Composite T-Beams (적층복합 T형 보의 휨 해석)

  • Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.397-405
    • /
    • 2014
  • A shear-flexible beam element is presented for the flexural analysis of laminated composite T-beams with arbitrary lay-ups. Based on the first-order shear deformable beam theory, the derived element takes into account warping shear deformation and all coupling coming from material anisotropy. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements with seven degree-of-freedom per node are developed to solve governing equations. To demonstrate the versatility and accuracy of the beam element formulated, numerical results are performed for symmetric and anti-symmetric angle-ply composite T-beams under the uniformly distributed and concentrated load. The effects of fiber angle and shear deformation are investigated for different laminated stacking sequence. The quadratic and cubic elements are shown to be applicable to the flexural analysis of composite T-beams.

Scaling laws for vibration response of anti-symmetrically laminated plates

  • Singhatanadgid, Pairod;Ungbhakorn, Variddhi
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.345-364
    • /
    • 2002
  • The scaling laws for vibration response of anti-symmetrically laminated plates are derived by applying the similitude transformation to the governing differential equations directly. With this approach, a closed-form solution of the governing equations is not required. This is a significant advantage over the method employed by other researchers where similitude transformation is applied to the closed-form solution. The scaling laws are tested by comparing the similitude fundamental frequencies to the theoretical fundamental frequencies determined from the available closed-form solutions. In case of complete similitude, similitude solutions from the scaling laws exactly agree with the theoretical solutions. Sometimes, it may not be feasible to select the model which obeys the similarity requirement completely, therefore partial similitude is theoretically investigated and approximate scaling laws are recommended. The distorted models in stacking sequences and laminated material properties demonstrate reasonable accuracy. On the contrary, a model with distortion in fiber angle is not recommended. The derived scaling laws are very useful to determine the vibration response of complex prototypes by performing the experiment on a model with required similarities.

Buckling and vibration of laminated composite circular plate on winkler-type foundation

  • Afsharmanesh, B.;Ghaheri, A.;Taheri-Behrooz, F.
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Buckling and vibration characteristics of circular laminated plates under in-plane edge loads and resting on Winkler-type foundation are solved by the Ritz method. Inclusive numerical data are presented for the first three eigen-frequencies as a function of in-plane load for different classical edge conditions. Moreover, the effects of fiber orientation on the natural frequencies and critical buckling loads of laminated angle-ply plates with stacking sequence of $[({\beta}/-{\beta}/{\beta}/-{\beta})]_s$, are studied. Also, selected deformation mode shapes are illustrated. The correctness of results is established using finite element software as well as by comparison with the existing results in the literature.