• Title/Summary/Keyword: Fiber Reinforced Plastic(FRP)

Search Result 177, Processing Time 0.02 seconds

A Study on STR Analysis According to the Method of Developing Latent Fngerprints Deposited on Non-Porous Surfaces in the Marine Environment (해양환경 내 비다공성 표면에 유류된 잠재지문 현출방법에 따른 STR 분석 연구)

  • Kim, Jin-Sun;Kim, Sea-In;Yoon, Hyun-Kyoung;Choo, Min-kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.733-741
    • /
    • 2022
  • Among the various evidence found in maritime crimes, fingerprints and DNA are very important in that they can identify a suspect. In this study, 5 types of non-porous surfaces (plastic, stainless, glass, ceramic, FRP), which are often found as evidence in the actual marine environment, were selected, and latent and blood fingerprints were passed down and immersed at the Donghae Maritime Police Station's exclusive pier for about 7 days. After that, DNA extraction, quantification, and STR profile were analyzed after fingerprint developing CA fumming method and 4 powder methods (Swedish black powder, Concentrated black powder, Supranano red powder, Dazzle orange powder). Among the fingerprint developing methods, when Supranano red powder was applied, a relatively high amount of DNA was found. As a result of STR profile analysis, an average of 16.8 to 9 loci were secured, and all 20 were confirmed in glass and ceramic materials. As a result of the study, it was possible to secure the STR profile by extracting and quantifying DNA after applying the fingerprint developing method to virtual evidence immersed for about 7 days, and further research is needed to secure the STR profile by analyzing DNA after applying various fingerprint developing methods such as VMD and SPR.

Structural Behavior of Bolted Lap-Joint Connection in the Pultruded FRP Structural Members (볼트로 겹침이음된 펄트루젼 복합재 접합부의 구조적 거동)

  • Lee, Young-Geun;Shin, Kwang-Yeoul;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, we present the result of an experimental investigation pertaining to the structural behavior of bolted lap-joint connection of pultruded fiber reinforced plastic structural shapes. In the experimental investigation, in order to find the mechanical property of the material, tension and shear tests on the pultruded structural composite specimen are conducted prior to the investigation on the structural behavior of bolted lap-joint connection of the member. Based on the result, number of bolts, type of placement and location of bolt are determined to be a test variable. Three different types of experimental specimens are prepared. Tensile load is applied through the center of the specimen with lap-joint connection and the structural behavior and failure mode of the test specimens with respect to the tensile load increment are investigated. As a result, it is found that most of the failure mode at the lap-joint connection is shear failure mode. Consequently, it is also found that the data obtained through this experimental program could be used for the structure connection design as a basis.

Design of 1 MW High-temperature Superconducting Motor with Water-cooled Armature (수냉식 전기자로 구성된 1 MW 고온초전도 동기모터의 설계)

  • Baik, S.K.;Lee, J.D.;Kim, S.H.;Lee, E.Y.;Sohn, M.H.;Kwon, Y.K.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Lee, J.Y.;Hong, J.P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1258-1260
    • /
    • 2005
  • Superconducting synchronous motors and generators have the field coil composed of superconductor with almost zero resistance at superconducting state. Therefore, co or loss at the conventional field coil is eliminated and the superconducting machine gets higher efficiency. The armature coil of the superconducting machine is composed of cower wire and supported by non-magnetic material such as FRP(Fiber Reinforced Plastic). Although a fully-superconducting machine with superconducting armature coil has been researched, it was not developed toward industrial application because of AC transporting loss and difficulty in construction of the cooling structure and so on. This paper contains the design procedure of a 1 MW superconducting synchronous motor using high-temperature superconductor only for the field coil. Especially, the armature coil is designed by water-cooling in order to dissipate Joule heat easily. Moreover, 3-dimensional electromagnetic design is conducted to get a proper design result and reduce design errors from 2-dimensional approach.

  • PDF

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

The Welding Surface and Mechanical Characteristics in Friction Stir Welding for 5456-H116 Alloy (마찰교반용접에 의한 5456-H116 합금의 용접 형상과 기계적 특성)

  • Kim, Seong-Jong;Han, Min-Su;Jang, Seok-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.273-278
    • /
    • 2012
  • The use of Al alloys instead of fiber-reinforced plastic(FRP) in ship construction has increased because of the advantages of Al-alloy ships, including high speed, increased load capacity, and ease of recycling. This paper describes the effects of probe diameter on the optimum friction stir welding conditions of 5456-H116 alloy for leisure ship, measured by a tensile test. In friction stir welding using a probe diameter of 5 mm under various travel and rotation speed conditions, the best performance was achieved with a travel speed of 61 mm/min. Using a probe diameter of 6 mm, rotation speeds of 170-210 rpm, and a travel speed of 15 mm/min produced a rough surface and voids because of insufficient heat input produced by the low rotation speed. At 500-800 rpm, chips were observed, although there were no voids, and the weld surface was excellent. However, at 1100-2500 rpm, many chips were produced due to excessive heat input. Heat effects were very evident on the bottom. For a travel speed of 15 mm/min, heat input caused by friction increased as the rotation speed increased. The mechanical characteristics were degraded by accelerated softening due to increasing heat input.

Design and Strength Analysis of a Mast and Mounting Part of Dummy Gun for Multi-Mission Unmanned Surface Vehicle (복합임무 무인수상정의 마스트 및 특수임무장비 장착부 설계 및 강도해석)

  • Son, Juwon;Kim, Donghee;Choi, Byungwoong;Lee, Youngjin
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.51-59
    • /
    • 2018
  • The Multi-Mission Unmanned Surface Vehicle(MMUSV), which is manufactured using glass Fiber Reinforced Plastic(FRP) material, is designed to perform a surveillance and reconnaissance on the sea. Various navigation sensors, such as RADAR, RIDAR, camera, are mounted on a mast to perform an autonomous navigation. And a dummy gun is mounted on the deck of the MMUSV for a target tracking and disposal. It is necessary to analyze a strength for structures mounted on the deck because the MMUSV performs missions under a severe sea state. In this paper, a strength analysis of the mast structure is performed on static loads and lateral external loads to verify an adequacy of the designed mast through a series of simulations. Based on the results of captive model tests, a strength analysis for a heave motion of the mast structure is conducted using a simulation tool. Also a simulation and fatigue test for a mounting part between the MMUSV and the dummy gun are performed using a specimen. The simulation and test results are represented that a structure of the mast and mounting part of the dummy gun are appropriately designed.he impact amount are performed through simulation and experiments.

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.