• Title/Summary/Keyword: Fiber Reinforced Composites

Search Result 1,353, Processing Time 0.026 seconds

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.

Reinforcement, Thermal and Fire Retardant Improvement of Phenolic Composites by Surface Treatment of CFRP Chip (CFRP Chip 표면처리에 따른 페놀복합재료의 강화, 내열성 및 난연성 향상)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • CFRP chip is the byproduct from carbon fiber reinforced plastic (CFRP) processing. CFRP chip is not simply a waste mainly composed of fine carbon fiber and epoxy resin. CFRP chip keeps matrix to maximize their reinforcing effect. To obtain a uniform length of carbon fiber in CFRP chip, chip was chopped ina mortar. CFRP chip should be purified to get better interface adhesion. Epoxy resin on the carbon fiber was removed by $H_2O_2$ surface etching treatment. Optimal dispersion and fabrication conditions of CFRP chip embedded in phenolic resin were determined by thermal stability for fire retardant applications. CFRP chip-phenolic composite exhibits better mechanical and thermal properties than neat phenolic resin. Surface condition of CFRP chip-phenolic composite was evaluated by static contact angle measurement. Contact angle of CFRP chip-phenolic composite was greater than neat phenolic due to heterogeneous condition of fine carbon fibers. From the evaluation for fire retardant (ASTM D635-06) test, thermal stability of CFRP chip-phenolic composite was found to be improved with higher concentration of CFRP chip.

Utilization of Finite Element Analysis in Design and Performance Evaluation of CFRP Bicycle Frames (유한요소해석을 이용한 CFRP 자전거 프레임의 설계 및 성능 평가)

  • Lee, Yong-Sung;Shin, Ki-Hoon;Cheong, Seong-Kyun;Choi, Ung-Jae;Kim, Young-Keun;Park, Kyung-Rea;Kim, Hong Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • With the continuing demand for lightweight bicycles, carbon fiber composite materials have been widely used in manufacturing bicycle frames and components. Unlike general isotropic materials, the structural characteristics of composite materials are strongly influenced by the staking directions and sequences of composite laminates. Thus, to verify the design process of bicycles manufactured using composites, structural analysis is considered essential. In this study, a carbon-fiber-reinforced plastic (CFRP) bicycle frame was designed and its structural behavior was investigated using finite element analysis (FEA). By measuring the failure indices of the fiber and matrix under various stacking sequences and loading conditions, the effect of the stacking condition of composite laminates on the strength of the bicycle structure was examined. In addition, the structural safety of the bicycle frame can be enhanced by reinforcing weak regions prone to failure using additional composite laminates.

Mechanical Properties of NBR Rubber Composites Filled with Reinforced Fiber and Ceramics (강화섬유와 세라믹이 충진된 NBR 고무 복합체의 기계적 물성 특성)

  • Kwon, Byeong-Jin;Kim, Young-Min;Lee, Danbi;Park, Soo-Yong;Jung, Jinwoong;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.118-127
    • /
    • 2021
  • In this study, the mechanical properties of vulcanized rubber were evaluated through compounding by controlling filler content to improve the mechanical properties of NBR rubber. Aramid and glass fibers with excellent heat resistance were used as fillers, and ceramics were additionally used in anticipation of a complementary effect, and as for the ceramic materials, needle-shaped and plate-shaped ceramics were used. Each filler was used in an amount of 5.0, 10.0, 15.0, and 20.0 phr in order to investigate the basic properties according to the amount of filler. To confirm the complementary effect through ceramic application, each 10.0 phr fiber and ceramic were mixed with 1:1 ratio to evaluate mechanical properties. As a result, it was confirmed that the decreasing ratio of tensile strength after heat aging was small in the order of aramid fiber, acicular ceramic, glass fiber, and plate ceramic in the case of applying the filler alone. In addition, the mechanical characteristics of vulcanized rubber using composite filler based on fibers and ceramics were evaluated, and it was confirmed that the composite filler had a complementary effect on thermal aging.

Stress-Strain Responses of Concrete Confined by FRP Composites (FRP 합성재료에 의하여 구속된 콘크리트의 응력-변형률 응답 예측)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • An analytical method capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (fiber reinforced polymers) composites in a rational manner is presented. Its underlying idea is that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure, and can be utilized to estimate the load-carrying capacity of concrete by considering the corresponding accumulated damage. Following from this, an elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. The proposed method enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods. Several existing analytical methods that can predict the overall response were also examined and discussed, particularly focusing on the way of considering the volumetric expansion. The results predicted by the proposed and Samaan's bilinear equation models correlated with observed results with a reasonable degree, however it can be judged that the latter is not capable of predicting the response of lateral strains correctly due to incorporating the initial Poisson's ratio and the final converged dilation rate only. Further, the proposed method seems to have greater benefits in other applications by the use of the fundamental principles of mechanics.

A STUDY ON THE TENSILE STRENGTH OF REINFORCED VENEERING COMPOSITE RESINS FOR CROWN (강화형 치관용 복합레진의 인장강도에 관한 연구)

  • Ahn, Seung-Geun;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.226-241
    • /
    • 2000
  • Recently a new generation of crown and bridge veneering resins containing submicron glass fillers was introduced. These ultrasmall particle hybrid composite materials distinguish themselves, compared with conventional microfill crown and bridge resins, through improved mechanical properties. It is claimed that these composites are suitable for metal free crowns and even bridges using fiber reinforcement. The purpose of this study was to evaluate the effect of thermal cycling on the tensile strength of the following veneering composites: Artglass(Heraeus Kulzer Co., Wehrheim, Germany), Estonia(Kuraray Co.. Japan), Sculpture(Jeneric Pentron Co., Wallingford, U.S.A.), and Targis(Ivoclar Co., Schaan Liechenstein). According to manufacturer's instructions, rectangular tensile test specimens measuring $1.5{\times}2.0{\times}4.5mm$ were made using a teflon mold. Whole specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 10 days, and another group was subjected to thermal cycling($10,000{\times}$) in water($5/55^{\circ}C$). All test specimens were placed in a universal testing machine and loaded until fracture with a crosshead speed of 0.5mm/min. Weibull analysis and Tukey's test were used to analyze the data. The fracture surfaces of specimens were observed in SEM and the aliphatic C=C absorbance peak of Estenia and Targis resin was analyzed using Fourier transform infrared(FTIR) spectroscopy. Within the limitations imposed in this study, the following conclusions can be drawn: 1. Both in drying condition and thermal cycling condition, the highest tensile strength was observed in Estenia testing group(p<0.05). 2. The strength data were at to single-mode Weibull distribution, and the Weibull modulus of all veneering composite resin specimens increased after thermal cycling treatment. 3. After thermal cycling test, the highest tensile strength was observed in the Estenia group, and the lowest value was observed in the Targis group. The tensile strength values showed the significant differences between each group(p<0.05) 4. The aliphatic C=C absorbance peak of Estonia and Targis resin was decreased after light curing, and there was no distinct change after thermal cycling.

  • PDF

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment (고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구)

  • Kim, Daehoon;Eom, Jaewon;Ko, Youngjong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2018
  • Glass fiber reinforced polyester (GFRP) composites are widely used as structural materials in harsh environment such as underground pipes, tanks and boat hulls, which requires long-term water resistance. Especially, these materials might be damaged due to delamination between gelcoat and composites through an osmotic process when they are immersed in water. In this study, GFRP laminates were prepared by surface treatment of UPE (unsaturated polyester) gelcoat by vacuum infusion process to improve the durability of composite materials used in underground pipes. The composite surface coated with gelcoat was examined for surface defects, cracking, and hardness change characteristics in water-immersion environments (different temperatures of $60^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$). The penetration depth of cracks was investigated by micro CT imaging according to water immersion temperature. It was confirmed that cracks developed into the composites material at $75^{\circ}C$ and $85^{\circ}C$ causing loss of durability of the materials. The point at which the initial crack initiated was defined as the failure time and the life expectancy at $23^{\circ}C$ was measured using the Arrhenius equation. The results from this study is expected to be applied to reliability evaluation of various industrial fields where gelcoat is applied such as civil engineering, construction, and marine industry.

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.

Glass Fiber Composite Material with Polyurethane Toughener in Unsaturated Polyester Resin (UPR) (불포화 폴리에스터 (UPR)에 폴리우레탄을 첨가하여 강인성을 부여한 유리섬유 복합소재)

  • Baek, Chang Wan;Jang, Tae Woo;Kim, Taehee;Kim, Hye Jin;Kim, Hyeon-Gook;Kim, Changyoon;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.63-68
    • /
    • 2021
  • Unsaturated Polyester Resin (UPR) is in general used as a resin to prepare for composite materials with reinforcing materials such as glass fibers. UPR, a thermosetting resin, is used in industry to prepare for sheet molding compound (SMC) molding prepreg that has excellent productivity and is advantageous for mass production among various molding methods of composite materials. The fiber-reinforced composite material using UPR as a matrix material is light and has the advantage of excellent physical properties, but it is weak against impact and is fragile. Four types of polyurethane were synthesized and added to UPR resin to overcome the shortcomings.