• 제목/요약/키워드: Fiber Raman amplifier

검색결과 16건 처리시간 0.032초

Wideband Gain Flattened Hybrid Erbium-doped Fiber Amplifier/Fiber Raman Amplifier

  • Afkhami, Hossein;Mowla, Alireza;Granpayeh, Nosrat;Hormozi, Azadeh Rastegari
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.342-350
    • /
    • 2010
  • An optimal wideband gain flattened hybrid erbium-doped fiber amplifier/fiber Raman amplifier (EDFA/FRA) has been introduced. A new and effective optimization method called particle swarm optimization (PSO) is employed to find the optimized parameters of the EDFA/FRA. Numerous parameters which are the parameters of the erbium-doped fiber amplifier (EDFA) and the fiber Raman amplifier (FRA) define the gain spectrum of a hybrid EDFA/FRA. Here, we optimize the length, $Er^{3+}$ concentration, and pump power and wavelength of the EDFA and also pump powers and wavelengths of the FRA to obtain the flattest operating gain spectrum. Hybrid EDFA/FRA with 6-pumped- and 10-pumped-FRAs have been studied. Gain spectrum variations are 1.392 and 1.043 dB for the 6-pumped- and 10-pumped-FRAs, respectively, in the 108.5 km hybrid EDFA/FRAs, with 1 mW of input signal powers. Dense wavelength division multiplexing (DWDM) system with 60 signal channels in the wavelength range of 1529.2-1627.1 nm, i.e. the wide bandwidth of 98 nm, is studied. In this work, we have added FRA's pump wavelengths to the optimization parameters to obtain better results in comparison with the results presented in our previous works.

Design of Hybrid Optical Amplifiers for High Capacity Optical Transmission

  • Kim, Seung-Kwan;Chang, Sun-Hyok;Han, Jin-Soo;Chu, Moo-Jung
    • ETRI Journal
    • /
    • 제24권2호
    • /
    • pp.81-96
    • /
    • 2002
  • This paper describes our design of a hybrid amplifier composed of a distributed Raman amplifier and erbium-doped fiber amplifiers for C- and L-bands. We characterize the distributed Raman amplifier by numerical simulation based on the experimentally measured Raman gain coefficient of an ordinary single mode fiber transmission line. In single channel amplification, the crosstalk caused by double Rayleigh scattering was independent of signal input power and simply given as a function of the Raman gain. The double Rayleigh scattering induced power penalty was less than 0.1 dB after 1000 km if the on-off Raman gain was below 21 dB. For multiple channel amplification, using commercially available pump laser diodes and fiber components, we determined and optimized the conditions of three-wavelength Raman pumping for an amplification bandwidth of 32 nm for C-band and 34 nm for L-band. After analyzing the conventional erbium-doped fiber amplifier analysis in C-band, we estimated the performance of the hybrid amplifier for long haul optical transmission. Compared with erbium-doped fiber amplifiers, the optical signal-to-noise ratio was calculated to be higher by more than 3 dB in the optical link using the designed hybrid amplifier.

  • PDF

Forward Raman amplification for the narrow band Stokes line by double-pass fiber Raman scheme in multi-mode fiber

  • Hwang, In-Duk;Lee, Choo-Hie
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 제11회 정기총회 및 00년 동계학술발표회 논문집
    • /
    • pp.238-239
    • /
    • 2000
  • The optical fibers are an interesting medium for effective tunable optical frequency conversion in the spectral range of UV, Visible, and near-IR through the nonlinear processes. A number of papers for developing the wideband and flat-gain amplifier for the WDM system applications through the combination of EDFA or thulium-doped fluoride fiber amplifier and Raman amplifier, are reported$^{(1)}$ . Even though a variety of papers related to Raman amplifications are published, the amplification with the feedback of the residual pump is not investigated yet. Accordingly, in this paper, we report the characteristics of forward Raman amplification by the simple and double-pass fiber Raman configuration through the feedback of residual pump beam. (omitted)

  • PDF

Wideband Hybrid Fiber Amplifier Using Er-Doped Fiber and Raman Medium

  • Seo, Hong-Seok;Ahn, Joon-Tae;Park, Bong-Je;Chung, Woon-Jin
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.779-784
    • /
    • 2007
  • In this paper, we report the experimental results of a hybrid wideband fiber amplifier. The amplifying medium is a concatenated hybrid fiber consisting of Er-doped fiber (EDF) and dispersion compensating fiber (DCF). The gain mechanisms are based on stimulated emission in the EDF and stimulated Raman scattering (SRS) in the DCF. Since we simultaneously use optical amplification by the two processes, the gain bandwidth is easily expanded over 105 nm by a two-tone pumping scheme. Using an experimental setup constructed with a hybrid structure of EDF-DCF-EDF, we analyzed the spectral behavior of amplified spontaneous emission for pumping powers. We achieved an optical gain of over 20 dB in the wavelength range from 1,500 to 1,600 nm under optimized pumping conditions to make the spectral gain shape flat.

  • PDF

On the Optimization of Raman Fiber Amplifier using Genetic Algorithm in the Scenario of a 64 nm 320 Channels Dense Wavelength Division Multiplexed System

  • Singh, Simranjit;Saini, Sonak;Kaur, Gurpreet;Kaler, Rajinder Singh
    • Journal of the Optical Society of Korea
    • /
    • 제18권2호
    • /
    • pp.118-123
    • /
    • 2014
  • For multi parameter optimization of Raman Fiber Amplifier (RFA), a simple genetic algorithm is presented in the scenario of a 320 channel Dense Wavelength Division Multiplexed (DWDM) system at channel spacing of 25 GHz. The large average gain (> 22 dB) is observed from optimized RFA with the optimized parameters, such as 39.6 km of Raman length with counter-propagating pumps tuned to 205.5 THz and 211.9 THz at pump powers of 234.3 mW, 677.1 mW respectively. The gain flattening filter (GFF) has also been optimized to further reduce the gain ripple across the frequency range from 190 to 197.975 THz for broadband amplification.

Broadband Wavelength-swept Raman Laser for Fourier-domain Mode Locked Swept-source OCT

  • Lee, Hyung-Seok;Jung, Eun-Joo;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.316-320
    • /
    • 2009
  • A novel broadband wavelength-swept Raman laser was used to implement Fourier-domain mode locked (FDML) swept-source optical coherence tomography (SS-OCT). Instead of a conventional semiconductor optical amplifier, this study used broadband optical fiber Raman amplification, over 50 nm centered around 1545 nm, using a multi-wavelength optical pumping scheme, which was implemented with the four laser diodes at the center wavelengths of 1425, 1435, 1455 and 1465 nm, respectively, and the maximum operating power of 150 mW each. The operating swept frequency of the laser was determined to 16.7 kHz from the FDML condition of 12 km optical fiber in the ring cavity. The OCT images were obtained using the novel broadband wavelengthswept Raman laser source.

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • 제17권3호
    • /
    • pp.237-241
    • /
    • 2013
  • This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

라만 증폭기에서 광섬유 구조에 따른 성능 분석 (system performance with different fiber structures in Raman ampliffer)

  • 박재형;민범기;박남규
    • 한국광학회지
    • /
    • 제12권2호
    • /
    • pp.121-128
    • /
    • 2001
  • 이 논문에서는 광섬유의 구조에 따라 증폭기 이득과 이중 레일레이 교차 잡음의 함수로서의 라만 광섬유 증폭기의 성능을 살펴보았다. 라만 증폭은 높은 펌프 파워를 필요로 하는 비선형 현상이므로 작은 유효면적을 갖는 광섬유를 사용하면 펌프파워의 효율면에서 장점을 가질 수 있다는 것을 쉽게 생각할 수 있다. 여기서 쉽게 간과할 수 있는 사실이 레일레이 후방 산란에 대한 것이다. 레일레이 후방 산란 역시 광섬유의 유효 면적이 작아짐에 따라 증가함으로 증폭기의 이득 증가에 따른 잡음의 증가도 고려해야 한다. 더구나 이중 레일레이 산란은 증폭 매질인 광섬유내에서 두 번 반사하면서 더욱 크게 증폭된다. 그러므로 이와 같은 이중 레일레이 산란에 의한 시스템 성능 저하가 크게 문제가 될 수 있다. 그러므로 라만 광섬유 증폭기에서 광섬유 구조의 변화에 대해서 얻어지는 이익(증가된 이득)과 시스템 페널티(이중 레일레이 교차 잡음)에 대한 분석이 필요하다 이를 바탕으로 적절한 광섬유를 디자인 함으로써 라만 광섬유증폭기에서 시스템 패널티 없이 라만 증폭 효율을 증가시킬 수 있다.

  • PDF

Simulation and Experimental Validation of Gain-Control Parallel Hybrid Fiber Amplifier

  • Ali, Mudhafar Hussein;Abdullah, Fairuz;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Al-Mashhadani, Thamer Fahad;Abass, Abdulla Khudiar
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.657-662
    • /
    • 2014
  • We demonstrate a simulation of a parallel hybrid fiber amplifier in the C+L-band with a gain controlling technique. A variable optical coupler is used to control the input signal power for both EDFA and RFA branches. The gain spectra of the C+L-band are flattened by optimizing the coupling ratio of the input signal power. In order to enhance the pump conversion efficiency, the EDFA branch was pumped by the residual Raman pump power. A gain bandwidth of 60 nm from 1530 nm to 1590 nm is obtained with large input signal power less than -5 dBm. The gain variation is about 1.06 dB at a small input signal power of -30 dBm, and it is reduced to 0.77 dB at the large input signal power of -5 dBm. The experimental results show close agreement with the simulation results.

10 Gbit/s 128 채널 고밀도 파장다중화 신호를 위해 EDFA와 라만 증폭기를 이용한 320km 광전송 실험 (320km Optical Transmission using EDFA and Raman amplifier for 10Gbit/s 128 Channel DWDM Signals)

  • 최보훈
    • 한국통신학회논문지
    • /
    • 제34권6B호
    • /
    • pp.568-574
    • /
    • 2009
  • 128 채널 고밀도 파장다중화 광신호들을 위한 320km 광전송 링크가 시뮬레이션으로 계산되고 실험으로 구현되었다. 이 링크에서 사용된 광섬유 증폭기은 분산형 라만 증폭기와 C 대역과 L 대역을 함께 증폭시킬 수 있는 이중 대역 EDFA가 함께 고려되어 컴퓨터 시뮬레이션을 통해 링크의 특성이 계산되었다. 여기서 계산된 값을 구현할 수 있도록 증폭기의 구조가 최적화되고 이 구조가 모듈로 제작되었다. 제작된 증폭기를 사용하여 구현된 링크에서 측정된 320km 거리에서의 광신호잡음비는 각 대역에서 평균 25dB였고 이는 처음 링크 계산 시에 의도된 값과 잘 일치하였다.